aboutsummaryrefslogtreecommitdiffstats
path: root/q3radiant/brush_primit.cpp
blob: bdcaa96e91fac9999b891023ccbfda4cb03ee21e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/
#include "stdafx.h"
#include "qe3.h"

// compute a determinant using Sarrus rule
//++timo "inline" this with a macro
// NOTE : the three vec3_t are understood as columns of the matrix
vec_t SarrusDet(vec3_t a, vec3_t b, vec3_t c)
{
	return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2]
		-c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1];
}

//++timo replace everywhere texX by texS etc. ( ----> and in q3map !) 
// NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME !
// WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0
// rotation by (0,RotY,RotZ) assigns X to normal
void ComputeAxisBase(vec3_t normal,vec3_t texS,vec3_t texT )
{
	vec_t RotY,RotZ;
	// do some cleaning
	if (fabs(normal[0])<1e-6)
		normal[0]=0.0f;
	if (fabs(normal[1])<1e-6)
		normal[1]=0.0f;
	if (fabs(normal[2])<1e-6)
		normal[2]=0.0f;
	RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0]));
	RotZ=atan2(normal[1],normal[0]);
	// rotate (0,1,0) and (0,0,1) to compute texS and texT
	texS[0]=-sin(RotZ);
	texS[1]=cos(RotZ);
	texS[2]=0;
	// the texT vector is along -Z ( T texture coorinates axis )
	texT[0]=-sin(RotY)*cos(RotZ);
	texT[1]=-sin(RotY)*sin(RotZ);
	texT[2]=-cos(RotY);
}

void FaceToBrushPrimitFace(face_t *f)
{
	vec3_t texX,texY;
	vec3_t proj;
	// ST of (0,0) (1,0) (0,1)
	vec_t ST[3][5]; // [ point index ] [ xyz ST ]
	//++timo not used as long as brushprimit_texdef and texdef are static
/*	f->brushprimit_texdef.contents=f->texdef.contents;
	f->brushprimit_texdef.flags=f->texdef.flags;
	f->brushprimit_texdef.value=f->texdef.value;
	strcpy(f->brushprimit_texdef.name,f->texdef.name); */
#ifdef _DEBUG
	if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f )
	{
		Sys_Printf("Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n");
	}
	// check d_texture
	if (!f->d_texture)
	{
		Sys_Printf("Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n");
		return;
	}
#endif
	// compute axis base
	ComputeAxisBase(f->plane.normal,texX,texY);
	// compute projection vector
	VectorCopy(f->plane.normal,proj);
	VectorScale(proj,f->plane.dist,proj);
	// (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane
	// (1,0) in plane axis base is texX in world coordinates + projection on the affine plane
	// (0,1) in plane axis base is texY in world coordinates + projection on the affine plane
	// use old texture code to compute the ST coords of these points
	VectorCopy(proj,ST[0]);
	EmitTextureCoordinates(ST[0], f->d_texture, f);
	VectorCopy(texX,ST[1]);
	VectorAdd(ST[1],proj,ST[1]);
	EmitTextureCoordinates(ST[1], f->d_texture, f);
	VectorCopy(texY,ST[2]);
	VectorAdd(ST[2],proj,ST[2]);
	EmitTextureCoordinates(ST[2], f->d_texture, f);
	// compute texture matrix
	f->brushprimit_texdef.coords[0][2]=ST[0][3];
	f->brushprimit_texdef.coords[1][2]=ST[0][4];
	f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2];
	f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2];
	f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2];
	f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2];
}

// compute texture coordinates for the winding points
void EmitBrushPrimitTextureCoordinates(face_t * f, winding_t * w)
{
	vec3_t texX,texY;
	vec_t x,y;
	// compute axis base
	ComputeAxisBase(f->plane.normal,texX,texY);
	// in case the texcoords matrix is empty, build a default one
	// same behaviour as if scale[0]==0 && scale[1]==0 in old code
	if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0)
	{
		f->brushprimit_texdef.coords[0][0] = 1.0f;
		f->brushprimit_texdef.coords[1][1] = 1.0f;
		ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture );
	}
	int i;
    for (i=0 ; i<w->numpoints ; i++)
	{
		x=DotProduct(w->points[i],texX);
		y=DotProduct(w->points[i],texY);
#ifdef _DEBUG
		if (g_qeglobals.bNeedConvert)
		{
			// check we compute the same ST as the traditional texture computation used before
			vec_t S=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2];
			vec_t T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2];
			if ( fabs(S-w->points[i][3])>1e-2 || fabs(T-w->points[i][4])>1e-2 )
			{
				if ( fabs(S-w->points[i][3])>1e-4 || fabs(T-w->points[i][4])>1e-4 )
					Sys_Printf("Warning : precision loss in brush -> brush primitive texture computation\n");
				else
					Sys_Printf("Warning : brush -> brush primitive texture computation bug detected\n");
			}
		}
#endif
		w->points[i][3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2];
		w->points[i][4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2];
	}
}

// parse a brush in brush primitive format
void BrushPrimit_Parse(brush_t	*b)
{
	epair_t		*ep;
	face_t		*f;
	int			i,j;
	GetToken (true);
	if (strcmp (token, "{"))
	{
		Warning ("parsing brush primitive");
		return;
	}
	do
	{
		if (!GetToken (true))
			break;
		if (!strcmp (token, "}") )
			break;
		// reading of b->epairs if any
		if (strcmp (token, "(") )
		{
			ep = ParseEpair();
			ep->next = b->epairs;
			b->epairs = ep;
		}
		else
		// it's a face
		{
			f = Face_Alloc();
			f->next = NULL;
			if (!b->brush_faces)
			  	b->brush_faces = f;
		  	else
			{
				face_t *scan;
				for (scan=b->brush_faces ; scan->next ; scan=scan->next)
					;
				scan->next = f;
		  	}

			// read the three point plane definition
			for (i=0 ; i<3 ; i++)
			{
				if (i != 0)
					GetToken (true);
				if (strcmp (token, "(") )
				{
					Warning ("parsing brush");
					return;
				}
				for (j=0 ; j<3 ; j++)
				{
					GetToken (false);
					f->planepts[i][j] = atof(token);
				}
				GetToken (false);
				if (strcmp (token, ")") )
				{
					Warning ("parsing brush");
					return;
				}
			}
			// texture coordinates
			GetToken (false);
			if (strcmp(token, "("))
			{
				Warning ("parsing brush primitive");
				return;
			}
			GetToken (false);
			if (strcmp(token, "("))
			{
				Warning ("parsing brush primitive");
				return;
			}
			for (j=0;j<3;j++)
			{
				GetToken(false);
				f->brushprimit_texdef.coords[0][j]=atof(token);
			}
			GetToken (false);
			if (strcmp(token, ")"))
			{
				Warning ("parsing brush primitive");
				return;
			}
			GetToken (false);
			if (strcmp(token, "("))
			{
				Warning ("parsing brush primitive");
				return;
			}
			for (j=0;j<3;j++)
			{
				GetToken(false);
				f->brushprimit_texdef.coords[1][j]=atof(token);
			}
			GetToken (false);
			if (strcmp(token, ")"))
			{
				Warning ("parsing brush primitive");
				return;
			}
			GetToken (false);
			if (strcmp(token, ")"))
			{
				Warning ("parsing brush primitive");
				return;
			}
			// read the texturedef
			GetToken (false);
			//strcpy(f->texdef.name, token);
			f->texdef.SetName(token);
			if (TokenAvailable ())
			{
				GetToken (false);
				f->texdef.contents = atoi(token);
        GetToken (false);
				f->texdef.flags = atoi(token);
				GetToken (false);
				f->texdef.value = atoi(token);
			}
		}
	} while (1);
}

// compute a fake shift scale rot representation from the texture matrix
// these shift scale rot values are to be understood in the local axis base
void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] )
{
#ifdef _DEBUG
	// check this matrix is orthogonal
	if (fabs(texMat[0][0]*texMat[0][1]+texMat[1][0]*texMat[1][1])>ZERO_EPSILON)
		Sys_Printf("Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n");
#endif
	scale[0]=sqrt(texMat[0][0]*texMat[0][0]+texMat[1][0]*texMat[1][0]);
	scale[1]=sqrt(texMat[0][1]*texMat[0][1]+texMat[1][1]*texMat[1][1]);
#ifdef _DEBUG
	if (scale[0]<ZERO_EPSILON || scale[1]<ZERO_EPSILON)
		Sys_Printf("Warning : unexpected scale==0 in TexMatToFakeTexCoords\n");
#endif
	// compute rotate value
	if (fabs(texMat[0][0])<ZERO_EPSILON)
	{
#ifdef _DEBUG
		// check brushprimit_texdef[1][0] is not zero
		if (fabs(texMat[1][0])<ZERO_EPSILON)
			Sys_Printf("Warning : unexpected texdef[1][0]==0 in TexMatToFakeTexCoords\n");
#endif
		// rotate is +-90
		if (texMat[1][0]>0)
			*rot=90.0f;
		else
			*rot=-90.0f;
	}
	else
	*rot = RAD2DEG( atan2( texMat[1][0], texMat[0][0] ) );
	shift[0] = -texMat[0][2];
	shift[1] = texMat[1][2];
}

// compute back the texture matrix from fake shift scale rot
// the matrix returned must be understood as a qtexture_t with width=2 height=2 ( the default one )
void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] )
{
	texMat[0][0] = scale[0] * cos( DEG2RAD( rot ) );
	texMat[1][0] = scale[0] * sin( DEG2RAD( rot ) );
	texMat[0][1] = -1.0f * scale[1] * sin( DEG2RAD( rot ) );
	texMat[1][1] = scale[1] * cos( DEG2RAD( rot ) );
	texMat[0][2] = -shift[0];
	texMat[1][2] = shift[1];
}

// convert a texture matrix between two qtexture_t
// if NULL for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates )
void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 )
{
	float s1,s2;
	s1 = ( qtex1 ? static_cast<float>( qtex1->width ) : 2.0f ) / ( qtex2 ? static_cast<float>( qtex2->width ) : 2.0f );
	s2 = ( qtex1 ? static_cast<float>( qtex1->height ) : 2.0f ) / ( qtex2 ? static_cast<float>( qtex2->height ) : 2.0f );
	texMat2->coords[0][0]=s1*texMat1->coords[0][0];
	texMat2->coords[0][1]=s1*texMat1->coords[0][1];
	texMat2->coords[0][2]=s1*texMat1->coords[0][2];
	texMat2->coords[1][0]=s2*texMat1->coords[1][0];
	texMat2->coords[1][1]=s2*texMat1->coords[1][1];
	texMat2->coords[1][2]=s2*texMat1->coords[1][2];
}

// texture locking
void Face_MoveTexture_BrushPrimit(face_t *f, vec3_t delta)
{
	vec3_t texS,texT;
	vec_t tx,ty;
	vec3_t M[3]; // columns of the matrix .. easier that way
	vec_t det;
	vec3_t D[2];
	// compute plane axis base ( doesn't change with translation )
	ComputeAxisBase( f->plane.normal, texS, texT );
	// compute translation vector in plane axis base
	tx = DotProduct( delta, texS );
	ty = DotProduct( delta, texT );
	// fill the data vectors
	M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx;
	M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty;
	M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
	D[0][0]=f->brushprimit_texdef.coords[0][2];
	D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2];
	D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2];
	D[1][0]=f->brushprimit_texdef.coords[1][2];
	D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2];
	D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2];
	// solve
	det = SarrusDet( M[0], M[1], M[2] );
	f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
	f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
	f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
	f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
	f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
	f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}

// call Face_MoveTexture_BrushPrimit after vec3_t computation
void Select_ShiftTexture_BrushPrimit( face_t *f, int x, int y )
{
	vec3_t texS,texT;
	vec3_t delta;
	ComputeAxisBase( f->plane.normal, texS, texT );
	VectorScale( texS, static_cast<float>(x), texS );
	VectorScale( texT, static_cast<float>(y), texT );
	VectorCopy( texS, delta );
	VectorAdd( delta, texT, delta );
	Face_MoveTexture_BrushPrimit( f, delta );
}

// texture locking
// called before the points on the face are actually rotated
void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, vec3_t vOrigin )
{
	vec3_t texS,texT;			// axis base of the initial plane
	vec3_t vRotate;				// rotation vector
	vec3_t Orig;
	vec3_t rOrig,rvecS,rvecT;	// (0,0) (1,0) (0,1) ( initial plane axis base ) after rotation ( world axis base )
	vec3_t rNormal;				// normal of the plane after rotation
	vec3_t rtexS,rtexT;			// axis base of the rotated plane
	vec3_t lOrig,lvecS,lvecT;	// [2] are not used ( but usefull for debugging )
	vec3_t M[3];
	vec_t det;
	vec3_t D[2];
	// compute plane axis base
	ComputeAxisBase( f->plane.normal, texS, texT );
	// compute coordinates of (0,0) (1,0) (0,1) ( initial plane axis base ) after rotation
	// (0,0) (1,0) (0,1) ( initial plane axis base ) <-> (0,0,0) texS texT ( world axis base )
	// rotation vector
	VectorSet( vRotate, 0.0f, 0.0f, 0.0f );
	vRotate[nAxis]=fDeg;
	VectorSet( Orig, 0.0f, 0.0f, 0.0f );
	VectorRotate( Orig, vRotate, vOrigin, rOrig );
	VectorRotate( texS, vRotate, vOrigin, rvecS );
	VectorRotate( texT, vRotate, vOrigin, rvecT );
	// compute normal of plane after rotation
	VectorRotate( f->plane.normal, vRotate, rNormal );
	// compute rotated plane axis base
	ComputeAxisBase( rNormal, rtexS, rtexT );
	// compute S/T coordinates of the three points in rotated axis base ( in M matrix )
	lOrig[0] = DotProduct( rOrig, rtexS );
	lOrig[1] = DotProduct( rOrig, rtexT );
	lvecS[0] = DotProduct( rvecS, rtexS );
	lvecS[1] = DotProduct( rvecS, rtexT );
	lvecT[0] = DotProduct( rvecT, rtexS );
	lvecT[1] = DotProduct( rvecT, rtexT );
	M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f;
	M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f;
	M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f;
	// fill data vector
	D[0][0]=f->brushprimit_texdef.coords[0][2];
	D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2];
	D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2];
	D[1][0]=f->brushprimit_texdef.coords[1][2];
	D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2];
	D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2];
	// solve
	det = SarrusDet( M[0], M[1], M[2] );
	f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
	f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
	f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
	f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
	f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
	f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}

// best fitted 2D vector is x.X+y.Y
void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y )
{
	double sx,sy;
	sx = DotProduct( v, X );
	sy = DotProduct( v, Y );
	if ( fabs(sy) > fabs(sx) )
	{
		x = 0;
		if ( sy > 0.0 )
			y =  1;
		else
			y = -1;
	}
	else
	{
		y = 0;
		if ( sx > 0.0 )
			x =  1;
		else
			x = -1;
	}
}