/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "stdafx.h" #include "qe3.h" // compute a determinant using Sarrus rule //++timo "inline" this with a macro // NOTE : the three vec3_t are understood as columns of the matrix vec_t SarrusDet(vec3_t a, vec3_t b, vec3_t c) { return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2] -c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1]; } //++timo replace everywhere texX by texS etc. ( ----> and in q3map !) // NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME ! // WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0 // rotation by (0,RotY,RotZ) assigns X to normal void ComputeAxisBase(vec3_t normal,vec3_t texS,vec3_t texT ) { vec_t RotY,RotZ; // do some cleaning if (fabs(normal[0])<1e-6) normal[0]=0.0f; if (fabs(normal[1])<1e-6) normal[1]=0.0f; if (fabs(normal[2])<1e-6) normal[2]=0.0f; RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0])); RotZ=atan2(normal[1],normal[0]); // rotate (0,1,0) and (0,0,1) to compute texS and texT texS[0]=-sin(RotZ); texS[1]=cos(RotZ); texS[2]=0; // the texT vector is along -Z ( T texture coorinates axis ) texT[0]=-sin(RotY)*cos(RotZ); texT[1]=-sin(RotY)*sin(RotZ); texT[2]=-cos(RotY); } void FaceToBrushPrimitFace(face_t *f) { vec3_t texX,texY; vec3_t proj; // ST of (0,0) (1,0) (0,1) vec_t ST[3][5]; // [ point index ] [ xyz ST ] //++timo not used as long as brushprimit_texdef and texdef are static /* f->brushprimit_texdef.contents=f->texdef.contents; f->brushprimit_texdef.flags=f->texdef.flags; f->brushprimit_texdef.value=f->texdef.value; strcpy(f->brushprimit_texdef.name,f->texdef.name); */ #ifdef _DEBUG if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f ) { Sys_Printf("Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"); } // check d_texture if (!f->d_texture) { Sys_Printf("Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n"); return; } #endif // compute axis base ComputeAxisBase(f->plane.normal,texX,texY); // compute projection vector VectorCopy(f->plane.normal,proj); VectorScale(proj,f->plane.dist,proj); // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane // use old texture code to compute the ST coords of these points VectorCopy(proj,ST[0]); EmitTextureCoordinates(ST[0], f->d_texture, f); VectorCopy(texX,ST[1]); VectorAdd(ST[1],proj,ST[1]); EmitTextureCoordinates(ST[1], f->d_texture, f); VectorCopy(texY,ST[2]); VectorAdd(ST[2],proj,ST[2]); EmitTextureCoordinates(ST[2], f->d_texture, f); // compute texture matrix f->brushprimit_texdef.coords[0][2]=ST[0][3]; f->brushprimit_texdef.coords[1][2]=ST[0][4]; f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2]; f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2]; f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2]; f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2]; } // compute texture coordinates for the winding points void EmitBrushPrimitTextureCoordinates(face_t * f, winding_t * w) { vec3_t texX,texY; vec_t x,y; // compute axis base ComputeAxisBase(f->plane.normal,texX,texY); // in case the texcoords matrix is empty, build a default one // same behaviour as if scale[0]==0 && scale[1]==0 in old code if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0) { f->brushprimit_texdef.coords[0][0] = 1.0f; f->brushprimit_texdef.coords[1][1] = 1.0f; ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); } int i; for (i=0 ; inumpoints ; i++) { x=DotProduct(w->points[i],texX); y=DotProduct(w->points[i],texY); #ifdef _DEBUG if (g_qeglobals.bNeedConvert) { // check we compute the same ST as the traditional texture computation used before vec_t S=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; vec_t T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; if ( fabs(S-w->points[i][3])>1e-2 || fabs(T-w->points[i][4])>1e-2 ) { if ( fabs(S-w->points[i][3])>1e-4 || fabs(T-w->points[i][4])>1e-4 ) Sys_Printf("Warning : precision loss in brush -> brush primitive texture computation\n"); else Sys_Printf("Warning : brush -> brush primitive texture computation bug detected\n"); } } #endif w->points[i][3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; w->points[i][4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; } } // parse a brush in brush primitive format void BrushPrimit_Parse(brush_t *b) { epair_t *ep; face_t *f; int i,j; GetToken (true); if (strcmp (token, "{")) { Warning ("parsing brush primitive"); return; } do { if (!GetToken (true)) break; if (!strcmp (token, "}") ) break; // reading of b->epairs if any if (strcmp (token, "(") ) { ep = ParseEpair(); ep->next = b->epairs; b->epairs = ep; } else // it's a face { f = Face_Alloc(); f->next = NULL; if (!b->brush_faces) b->brush_faces = f; else { face_t *scan; for (scan=b->brush_faces ; scan->next ; scan=scan->next) ; scan->next = f; } // read the three point plane definition for (i=0 ; i<3 ; i++) { if (i != 0) GetToken (true); if (strcmp (token, "(") ) { Warning ("parsing brush"); return; } for (j=0 ; j<3 ; j++) { GetToken (false); f->planepts[i][j] = atof(token); } GetToken (false); if (strcmp (token, ")") ) { Warning ("parsing brush"); return; } } // texture coordinates GetToken (false); if (strcmp(token, "(")) { Warning ("parsing brush primitive"); return; } GetToken (false); if (strcmp(token, "(")) { Warning ("parsing brush primitive"); return; } for (j=0;j<3;j++) { GetToken(false); f->brushprimit_texdef.coords[0][j]=atof(token); } GetToken (false); if (strcmp(token, ")")) { Warning ("parsing brush primitive"); return; } GetToken (false); if (strcmp(token, "(")) { Warning ("parsing brush primitive"); return; } for (j=0;j<3;j++) { GetToken(false); f->brushprimit_texdef.coords[1][j]=atof(token); } GetToken (false); if (strcmp(token, ")")) { Warning ("parsing brush primitive"); return; } GetToken (false); if (strcmp(token, ")")) { Warning ("parsing brush primitive"); return; } // read the texturedef GetToken (false); //strcpy(f->texdef.name, token); f->texdef.SetName(token); if (TokenAvailable ()) { GetToken (false); f->texdef.contents = atoi(token); GetToken (false); f->texdef.flags = atoi(token); GetToken (false); f->texdef.value = atoi(token); } } } while (1); } // compute a fake shift scale rot representation from the texture matrix // these shift scale rot values are to be understood in the local axis base void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] ) { #ifdef _DEBUG // check this matrix is orthogonal if (fabs(texMat[0][0]*texMat[0][1]+texMat[1][0]*texMat[1][1])>ZERO_EPSILON) Sys_Printf("Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n"); #endif scale[0]=sqrt(texMat[0][0]*texMat[0][0]+texMat[1][0]*texMat[1][0]); scale[1]=sqrt(texMat[0][1]*texMat[0][1]+texMat[1][1]*texMat[1][1]); #ifdef _DEBUG if (scale[0]0) *rot=90.0f; else *rot=-90.0f; } else *rot = RAD2DEG( atan2( texMat[1][0], texMat[0][0] ) ); shift[0] = -texMat[0][2]; shift[1] = texMat[1][2]; } // compute back the texture matrix from fake shift scale rot // the matrix returned must be understood as a qtexture_t with width=2 height=2 ( the default one ) void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] ) { texMat[0][0] = scale[0] * cos( DEG2RAD( rot ) ); texMat[1][0] = scale[0] * sin( DEG2RAD( rot ) ); texMat[0][1] = -1.0f * scale[1] * sin( DEG2RAD( rot ) ); texMat[1][1] = scale[1] * cos( DEG2RAD( rot ) ); texMat[0][2] = -shift[0]; texMat[1][2] = shift[1]; } // convert a texture matrix between two qtexture_t // if NULL for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 ) { float s1,s2; s1 = ( qtex1 ? static_cast( qtex1->width ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->width ) : 2.0f ); s2 = ( qtex1 ? static_cast( qtex1->height ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->height ) : 2.0f ); texMat2->coords[0][0]=s1*texMat1->coords[0][0]; texMat2->coords[0][1]=s1*texMat1->coords[0][1]; texMat2->coords[0][2]=s1*texMat1->coords[0][2]; texMat2->coords[1][0]=s2*texMat1->coords[1][0]; texMat2->coords[1][1]=s2*texMat1->coords[1][1]; texMat2->coords[1][2]=s2*texMat1->coords[1][2]; } // texture locking void Face_MoveTexture_BrushPrimit(face_t *f, vec3_t delta) { vec3_t texS,texT; vec_t tx,ty; vec3_t M[3]; // columns of the matrix .. easier that way vec_t det; vec3_t D[2]; // compute plane axis base ( doesn't change with translation ) ComputeAxisBase( f->plane.normal, texS, texT ); // compute translation vector in plane axis base tx = DotProduct( delta, texS ); ty = DotProduct( delta, texT ); // fill the data vectors M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx; M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty; M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; D[0][0]=f->brushprimit_texdef.coords[0][2]; D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; D[1][0]=f->brushprimit_texdef.coords[1][2]; D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // call Face_MoveTexture_BrushPrimit after vec3_t computation void Select_ShiftTexture_BrushPrimit( face_t *f, int x, int y ) { vec3_t texS,texT; vec3_t delta; ComputeAxisBase( f->plane.normal, texS, texT ); VectorScale( texS, static_cast(x), texS ); VectorScale( texT, static_cast(y), texT ); VectorCopy( texS, delta ); VectorAdd( delta, texT, delta ); Face_MoveTexture_BrushPrimit( f, delta ); } // texture locking // called before the points on the face are actually rotated void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, vec3_t vOrigin ) { vec3_t texS,texT; // axis base of the initial plane vec3_t vRotate; // rotation vector vec3_t Orig; vec3_t rOrig,rvecS,rvecT; // (0,0) (1,0) (0,1) ( initial plane axis base ) after rotation ( world axis base ) vec3_t rNormal; // normal of the plane after rotation vec3_t rtexS,rtexT; // axis base of the rotated plane vec3_t lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) vec3_t M[3]; vec_t det; vec3_t D[2]; // compute plane axis base ComputeAxisBase( f->plane.normal, texS, texT ); // compute coordinates of (0,0) (1,0) (0,1) ( initial plane axis base ) after rotation // (0,0) (1,0) (0,1) ( initial plane axis base ) <-> (0,0,0) texS texT ( world axis base ) // rotation vector VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); vRotate[nAxis]=fDeg; VectorSet( Orig, 0.0f, 0.0f, 0.0f ); VectorRotate( Orig, vRotate, vOrigin, rOrig ); VectorRotate( texS, vRotate, vOrigin, rvecS ); VectorRotate( texT, vRotate, vOrigin, rvecT ); // compute normal of plane after rotation VectorRotate( f->plane.normal, vRotate, rNormal ); // compute rotated plane axis base ComputeAxisBase( rNormal, rtexS, rtexT ); // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) lOrig[0] = DotProduct( rOrig, rtexS ); lOrig[1] = DotProduct( rOrig, rtexT ); lvecS[0] = DotProduct( rvecS, rtexS ); lvecS[1] = DotProduct( rvecS, rtexT ); lvecT[0] = DotProduct( rvecT, rtexS ); lvecT[1] = DotProduct( rvecT, rtexT ); M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; // fill data vector D[0][0]=f->brushprimit_texdef.coords[0][2]; D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; D[1][0]=f->brushprimit_texdef.coords[1][2]; D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // best fitted 2D vector is x.X+y.Y void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y ) { double sx,sy; sx = DotProduct( v, X ); sy = DotProduct( v, Y ); if ( fabs(sy) > fabs(sx) ) { x = 0; if ( sy > 0.0 ) y = 1; else y = -1; } else { y = 0; if ( sx > 0.0 ) x = 1; else x = -1; } }