diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 03:25:52 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 03:25:52 +0000 |
commit | f12ef31ef71c32ff3a8071595cf27eff4322477d (patch) | |
tree | 17f1aad031855571b7b7f49fa3294631c070401c | |
parent | 314d9975bcc659f1a46d82acba50ace43cf8b240 (diff) | |
download | afterklein-wiki-f12ef31ef71c32ff3a8071595cf27eff4322477d.tar.gz afterklein-wiki-f12ef31ef71c32ff3a8071595cf27eff4322477d.zip |
still testing
-rw-r--r-- | Fourier Series.page | 3 |
1 files changed, 1 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index a050d70..fb9ed7e 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -4,10 +4,9 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible?</b> To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: - $1. \cos(2x) = 1 - 2 \sin^2(x)$ $$\begin{array}{ccl} -e^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\ +\sin^2(x) & = & ?\\ & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ & = & \cos y+i\sin y\end{array}$$ |