summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Fourier Series.page3
1 files changed, 1 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index a050d70..fb9ed7e 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -4,10 +4,9 @@ We first begin with a few basic identities on the size of sets. Show that the se
##Why Fourier series is plausible?</b>
To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines:
- $1. \cos(2x) = 1 - 2 \sin^2(x)$
$$\begin{array}{ccl}
-e^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\
+\sin^2(x) & = & ?\\
& = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\
& = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\
& = & \cos y+i\sin y\end{array}$$