diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 03:25:18 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 03:25:18 +0000 |
commit | 314d9975bcc659f1a46d82acba50ace43cf8b240 (patch) | |
tree | 20b94206ad13b4d7526c215e8084cbf5556c11f1 | |
parent | 99524349daae12733b5d48fb220c1d5b551219c6 (diff) | |
download | afterklein-wiki-314d9975bcc659f1a46d82acba50ace43cf8b240.tar.gz afterklein-wiki-314d9975bcc659f1a46d82acba50ace43cf8b240.zip |
still testing
-rw-r--r-- | Fourier Series.page | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index ad3c6d8..a050d70 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -7,10 +7,10 @@ To show that Fourier series is plausible, let us consider some arbitrary trignom $1. \cos(2x) = 1 - 2 \sin^2(x)$ $$\begin{array}{ccl} -e^{iy} & = 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\ - & = 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ - & = (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ - & = \cos y+i\sin y\end{array}$$ +e^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\ + & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ + & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ + & = & \cos y+i\sin y\end{array}$$ ##What is the Fourier series actually?</b> |