diff options
author | Opheliar99 <> | 2010-07-04 02:13:34 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-04 02:13:34 +0000 |
commit | 0c978dbfdade8624698d91f19245d0fecf5a3356 (patch) | |
tree | fa73d515e29b01b2242d08300e852184055795d2 | |
parent | 3797a85d15f62fc6a469a055d6d7c25bdec9aece (diff) | |
download | afterklein-wiki-0c978dbfdade8624698d91f19245d0fecf5a3356.tar.gz afterklein-wiki-0c978dbfdade8624698d91f19245d0fecf5a3356.zip |
posted solutions of 2 and 3 in pset2
-rw-r--r-- | Problem Set 2.page | 3 |
1 files changed, 2 insertions, 1 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index 05c4885..6fec599 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -40,7 +40,8 @@ $\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$ 2. Since $sin(x) = \frac{e^{ix}-e^{-ix}}{2}$, -$\int_0^{2\pi} \sin^4(x) dx = \frac{{e^{ix}-e^{-ix}}^4}{16}$ +$\int_0^{2\pi} \sin^4(x) dx = \frac{{e^{ix}-e^{-ix}}^4}{16}$, + $ = \frac{e^{i4x}+e^{-4ix}-4 e^{i2x} -4 e^{-i2x}+6}{16}$ If we express any periodic function $f(x)$ as |