From 0c978dbfdade8624698d91f19245d0fecf5a3356 Mon Sep 17 00:00:00 2001 From: Opheliar99 <> Date: Sun, 4 Jul 2010 02:13:34 +0000 Subject: posted solutions of 2 and 3 in pset2 --- Problem Set 2.page | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/Problem Set 2.page b/Problem Set 2.page index 05c4885..6fec599 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -40,7 +40,8 @@ $\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$ 2. Since $sin(x) = \frac{e^{ix}-e^{-ix}}{2}$, -$\int_0^{2\pi} \sin^4(x) dx = \frac{{e^{ix}-e^{-ix}}^4}{16}$ +$\int_0^{2\pi} \sin^4(x) dx = \frac{{e^{ix}-e^{-ix}}^4}{16}$, + $ = \frac{e^{i4x}+e^{-4ix}-4 e^{i2x} -4 e^{-i2x}+6}{16}$ If we express any periodic function $f(x)$ as -- cgit v1.2.3