diff options
author | Opheliar99 <> | 2010-07-04 02:11:39 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-04 02:11:39 +0000 |
commit | 3797a85d15f62fc6a469a055d6d7c25bdec9aece (patch) | |
tree | f592ce4f899b832081114545e7e3559ac5597931 | |
parent | bcf15809237f87fd77e7f2ae736011298a58ae39 (diff) | |
download | afterklein-wiki-3797a85d15f62fc6a469a055d6d7c25bdec9aece.tar.gz afterklein-wiki-3797a85d15f62fc6a469a055d6d7c25bdec9aece.zip |
posted solutions of 2 and 3 in pset2
-rw-r--r-- | Problem Set 2.page | 3 |
1 files changed, 1 insertions, 2 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index cc84acb..05c4885 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -54,8 +54,7 @@ $a_{-4} = a_{4} = \sqrt{2\pi} \times 1/16$, $a_{-2} = a_{2} = - \sqrt{2\pi} \tim Since $a_m = < f_m, f >$, - -$\int_0^{2\pi} \sin^4(x) dx = <1, f> = \sqrt{2\pi} \times $<f_0, f>$$ +$ \int_0^{2\pi} \sin^4(x) dx = <1, f> = \sqrt{2\pi} \times <f_0, f>$ $= \sqrt{2\pi} \times a_0 = \frac{3 \pi}{4}$ |