summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-03 04:27:27 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-03 04:27:27 +0000
commit008401b708e4b836fb17c5bc9378368e94413f83 (patch)
tree5ea490825d3cc5861b249e463befcda527ce5c00
parentaf054ef30a72de36df80bf21e974696ce17116a1 (diff)
downloadafterklein-wiki-008401b708e4b836fb17c5bc9378368e94413f83.tar.gz
afterklein-wiki-008401b708e4b836fb17c5bc9378368e94413f83.zip
section 3 editing
-rw-r--r--Fourier Series.page2
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index d53530c..2c9ddd9 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -125,7 +125,7 @@ $$
& = & \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{i(n-m)x} \, dx \\
\end{array}
$$
-The exponential can be expanded using $e^{inx} = \cos nx + i \sin nx$. Then, integrating, we get the following:
+The exponential can be expanded using $e^{ikx} = \cos kx + i \sin kx$. Then, integrating, we get the following:
$$
\begin{array}{ccl}
n = m \Rightarrow (f_n,f_m) & = & 1\\