diff options
-rw-r--r-- | Fourier Series.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index d53530c..2c9ddd9 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -125,7 +125,7 @@ $$ & = & \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{i(n-m)x} \, dx \\ \end{array} $$ -The exponential can be expanded using $e^{inx} = \cos nx + i \sin nx$. Then, integrating, we get the following: +The exponential can be expanded using $e^{ikx} = \cos kx + i \sin kx$. Then, integrating, we get the following: $$ \begin{array}{ccl} n = m \Rightarrow (f_n,f_m) & = & 1\\ |