diff options
author | siveshs <siveshs@gmail.com> | 2010-07-03 04:26:58 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-03 04:26:58 +0000 |
commit | af054ef30a72de36df80bf21e974696ce17116a1 (patch) | |
tree | 07b268a9f9749315b99d76fa0e6596946055500f | |
parent | 80b88017e4028a93a70b73169aa855047ff7c8b5 (diff) | |
download | afterklein-wiki-af054ef30a72de36df80bf21e974696ce17116a1.tar.gz afterklein-wiki-af054ef30a72de36df80bf21e974696ce17116a1.zip |
section 3 editing
-rw-r--r-- | Fourier Series.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index fef0cc2..d53530c 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -125,7 +125,7 @@ $$ & = & \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{i(n-m)x} \, dx \\ \end{array} $$ -Here, +The exponential can be expanded using $e^{inx} = \cos nx + i \sin nx$. Then, integrating, we get the following: $$ \begin{array}{ccl} n = m \Rightarrow (f_n,f_m) & = & 1\\ |