From af054ef30a72de36df80bf21e974696ce17116a1 Mon Sep 17 00:00:00 2001 From: siveshs Date: Sat, 3 Jul 2010 04:26:58 +0000 Subject: section 3 editing --- Fourier Series.page | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Fourier Series.page b/Fourier Series.page index fef0cc2..d53530c 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -125,7 +125,7 @@ $$ & = & \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{i(n-m)x} \, dx \\ \end{array} $$ -Here, +The exponential can be expanded using $e^{inx} = \cos nx + i \sin nx$. Then, integrating, we get the following: $$ \begin{array}{ccl} n = m \Rightarrow (f_n,f_m) & = & 1\\ -- cgit v1.2.3