diff options
| -rw-r--r-- | math/algebra.page | 28 | 
1 files changed, 17 insertions, 11 deletions
diff --git a/math/algebra.page b/math/algebra.page index 658267e..27edb31 100644 --- a/math/algebra.page +++ b/math/algebra.page @@ -6,37 +6,43 @@ toc: no  # Algebra -*Note: Most of the definitions and notation in the section are based on [rudin] or [meserve].* +*Note: Most of the definitions and notation in the section are based on [^rudin] or [^meserve].* +----------- -----------------  --------------  --------------- ----------  ---------------------  --------  Name        Symbol             Pos. Integers?  Pos. Rationals? Rationals?  Reals (wrt Pos Int.)?  Complex? -----        -----------------  --------------  --------------- ----------  ---------------------  -------- +----------- -----------------  --------------  --------------- ----------  ---------------------  --------  addition    $a + b$            Y               Y               Y           Y                      Y +  product     $a\times b$        Y               Y               Y           Y                      Y +  subtraction $a-b$              N               N               Y           Y                      Y +  division    $\frac{a}{b}$      N               Y               Y           Y                      Y +  power       $a^b$              Y               Y               Y           Y                      Y +  root        $\sqrt{\text{a}}$  N               N               N           Y                      Y -----        -----------------  --------------  --------------- ----------  ---------------------  -------- +----------- -----------------  --------------  --------------- ----------  ---------------------  --------  Table: Closure of binary operators on given sets of numbers  ## Definitions  involution -    to raise a number to a given power +:   to raise a number to a given power  evolution -    to take a given root of a number +:   to take a given root of a number  associative -    $(a+b)+c=a+(b+c)$ +:   $(a+b)+c=a+(b+c)$ -comutative -    $a+b=b+c$ +commutative +:   $a+b=b+c$  distributive -    $(a+b)c=ac+bc$ +:   $(a+b)c=ac+bc$ -[^rudin] **Principles of Mathematical Analysis (3rd ed)**, by Walter Rudin. McGraw-Hill, 1976 +[^rudin]: **Principles of Mathematical Analysis (3rd ed)**, by Walter Rudin. McGraw-Hill, 1976 -[^meserve] **Fundamental Concepts of Algebra**, by Bruce Meserve. +[^meserve]: **Fundamental Concepts of Algebra**, by Bruce Meserve.  | 
