summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorbnewbold <bnewbold@robocracy.org>2010-01-24 08:40:17 +0000
committerUser <bnewbold@daemon.robocracy.org>2010-01-24 08:40:17 +0000
commit7268485fbc18c538d58471806ba7b38b372249f1 (patch)
tree1ef8f665ff3fd7f0b18284570d4b49acf7a1f4dd
parent0f704e6dfacb902fd0c81ae96a1fff2ad58f5a59 (diff)
downloadknowledge-7268485fbc18c538d58471806ba7b38b372249f1.tar.gz
knowledge-7268485fbc18c538d58471806ba7b38b372249f1.zip
table fixed!
-rw-r--r--math/algebra.page28
1 files changed, 17 insertions, 11 deletions
diff --git a/math/algebra.page b/math/algebra.page
index 658267e..27edb31 100644
--- a/math/algebra.page
+++ b/math/algebra.page
@@ -6,37 +6,43 @@ toc: no
# Algebra
-*Note: Most of the definitions and notation in the section are based on [rudin] or [meserve].*
+*Note: Most of the definitions and notation in the section are based on [^rudin] or [^meserve].*
+----------- ----------------- -------------- --------------- ---------- --------------------- --------
Name Symbol Pos. Integers? Pos. Rationals? Rationals? Reals (wrt Pos Int.)? Complex?
----- ----------------- -------------- --------------- ---------- --------------------- --------
+----------- ----------------- -------------- --------------- ---------- --------------------- --------
addition $a + b$ Y Y Y Y Y
+
product $a\times b$ Y Y Y Y Y
+
subtraction $a-b$ N N Y Y Y
+
division $\frac{a}{b}$ N Y Y Y Y
+
power $a^b$ Y Y Y Y Y
+
root $\sqrt{\text{a}}$ N N N Y Y
----- ----------------- -------------- --------------- ---------- --------------------- --------
+----------- ----------------- -------------- --------------- ---------- --------------------- --------
Table: Closure of binary operators on given sets of numbers
## Definitions
involution
- to raise a number to a given power
+: to raise a number to a given power
evolution
- to take a given root of a number
+: to take a given root of a number
associative
- $(a+b)+c=a+(b+c)$
+: $(a+b)+c=a+(b+c)$
-comutative
- $a+b=b+c$
+commutative
+: $a+b=b+c$
distributive
- $(a+b)c=ac+bc$
+: $(a+b)c=ac+bc$
-[^rudin] **Principles of Mathematical Analysis (3rd ed)**, by Walter Rudin. McGraw-Hill, 1976
+[^rudin]: **Principles of Mathematical Analysis (3rd ed)**, by Walter Rudin. McGraw-Hill, 1976
-[^meserve] **Fundamental Concepts of Algebra**, by Bruce Meserve.
+[^meserve]: **Fundamental Concepts of Algebra**, by Bruce Meserve.