diff options
author | bnewbold <bnewbold@robocracy.org> | 2010-01-24 09:48:25 +0000 |
---|---|---|
committer | User <bnewbold@daemon.robocracy.org> | 2010-01-24 09:48:25 +0000 |
commit | 214bc7f402377bdafea60be508c7194e596ef238 (patch) | |
tree | f1950843062d75f5a2fcaf894402defe5160c135 | |
parent | 7268485fbc18c538d58471806ba7b38b372249f1 (diff) | |
download | knowledge-214bc7f402377bdafea60be508c7194e596ef238.tar.gz knowledge-214bc7f402377bdafea60be508c7194e596ef238.zip |
fixes
-rw-r--r-- | physics/quantum/fermigas.page | 3 |
1 files changed, 2 insertions, 1 deletions
diff --git a/physics/quantum/fermigas.page b/physics/quantum/fermigas.page index de66ee1..38398d5 100644 --- a/physics/quantum/fermigas.page +++ b/physics/quantum/fermigas.page @@ -43,7 +43,8 @@ excited states in the gas. The radius can be derived by calculating the total volume enclosed: each block has volume $\frac{\pi^3}{l_x l_y l_z}=\frac{\pi^3}{V}$ and there are N/2 blocks occupied by N fermions, so: -$$\frac{1}{8}(\frac{4\pi}{3} |k_{F}|^{3})&=&\frac{Nq}{2}(\frac{\pi^{3}}{V})\\|k_{F}|&=&\sqrt{\frac{3Nq\pi^2}{V}}^3=\sqrt{3\pi^2\rho}^3$$ +$$\frac{1}{8}(\frac{4\pi}{3} |k_{F}|^{3}) = \frac{Nq}{2}(\frac{\pi^{3}}{V}) $$ +$$|k_{F}| = \sqrt{\frac{3Nq\pi^2}{V}}^3=\sqrt{3\pi^2\rho}^3$$ $\rho$ is the "free fermion density". The corresponding energy is: |