diff options
author | Opheliar99 <> | 2010-07-04 04:11:13 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-04 04:11:13 +0000 |
commit | f5cb3cc89c0eb29347cdcb95dc6543f46af095d9 (patch) | |
tree | dfd91ff7ecbefd58172bc70381e5a0450a5d1740 | |
parent | 3f965d6b32b5672b350b63444dbf75d72123f14d (diff) | |
download | afterklein-wiki-f5cb3cc89c0eb29347cdcb95dc6543f46af095d9.tar.gz afterklein-wiki-f5cb3cc89c0eb29347cdcb95dc6543f46af095d9.zip |
posted solutions of 2 and 3 in pset2
-rw-r--r-- | Problem Set 2.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index 078d5e1..be65cd5 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -54,7 +54,7 @@ $a_{-4} = a_{4} = \sqrt{2\pi} \times 1/16$, $a_{-2} = a_{2} = - \sqrt{2\pi} \tim Since $a_m = < f_m, f >$, -$\int_0^{2\pi} \sin^4(x) dx = <1, f> = \sqrt{2\pi} \times <f_0, f>$ +$\int_0^{2\pi} \sin^4(x) dx = <1, f> = \sqrt{2\pi} \times < f_0, f >$ $= \sqrt{2\pi} \times a_0 = \frac{3 \pi}{4}$ |