summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-02 20:25:27 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-02 20:25:27 +0000
commited7054dbf0bad7b6d916cbe2bc996687d89be4c5 (patch)
tree8b16d622ff648e65ad9fcfdaa13e087791dc25e9
parentfca618a688aecb9997125ca9b4b9a779372088c0 (diff)
downloadafterklein-wiki-ed7054dbf0bad7b6d916cbe2bc996687d89be4c5.tar.gz
afterklein-wiki-ed7054dbf0bad7b6d916cbe2bc996687d89be4c5.zip
section 2 editing
-rw-r--r--Fourier Series.page3
1 files changed, 2 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index eceb1ca..f084674 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -74,7 +74,8 @@ If it is possible to approximate the above function using a sum of sines and cos
It turns out that the above function can be approximated as the sum of two cosines, namely, $\cos^{2n}(x) + cos^{2n+1}(x)$
<center>![$\cos^{2n}(x)$](/cos10x.gif) ![$cos^{2n+1}(x)$](/cos11x.gif) </center>
-Summing these two
+Summing these two functions we get the following:
+![$\cos^{2n}(x) + cos^{2n+1}(x)$(/cos10x-cos11x.gif)
##What is the Fourier series actually?</b>