diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 20:25:27 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 20:25:27 +0000 |
commit | ed7054dbf0bad7b6d916cbe2bc996687d89be4c5 (patch) | |
tree | 8b16d622ff648e65ad9fcfdaa13e087791dc25e9 | |
parent | fca618a688aecb9997125ca9b4b9a779372088c0 (diff) | |
download | afterklein-wiki-ed7054dbf0bad7b6d916cbe2bc996687d89be4c5.tar.gz afterklein-wiki-ed7054dbf0bad7b6d916cbe2bc996687d89be4c5.zip |
section 2 editing
-rw-r--r-- | Fourier Series.page | 3 |
1 files changed, 2 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index eceb1ca..f084674 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -74,7 +74,8 @@ If it is possible to approximate the above function using a sum of sines and cos It turns out that the above function can be approximated as the sum of two cosines, namely, $\cos^{2n}(x) + cos^{2n+1}(x)$ <center>  </center> -Summing these two +Summing these two functions we get the following: +![$\cos^{2n}(x) + cos^{2n+1}(x)$(/cos10x-cos11x.gif) ##What is the Fourier series actually?</b> |