From ed7054dbf0bad7b6d916cbe2bc996687d89be4c5 Mon Sep 17 00:00:00 2001 From: siveshs Date: Fri, 2 Jul 2010 20:25:27 +0000 Subject: section 2 editing --- Fourier Series.page | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/Fourier Series.page b/Fourier Series.page index eceb1ca..f084674 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -74,7 +74,8 @@ If it is possible to approximate the above function using a sum of sines and cos It turns out that the above function can be approximated as the sum of two cosines, namely, $\cos^{2n}(x) + cos^{2n+1}(x)$
![$\cos^{2n}(x)$](/cos10x.gif) ![$cos^{2n+1}(x)$](/cos11x.gif)
-Summing these two +Summing these two functions we get the following: +![$\cos^{2n}(x) + cos^{2n+1}(x)$(/cos10x-cos11x.gif) ##What is the Fourier series actually? -- cgit v1.2.3