diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 13:20:41 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 13:20:41 +0000 |
commit | dd41ce0aea48eb532db2292fe072f1119b41942a (patch) | |
tree | 7dad3c01bb66a62250ab814949ed5a498ebcc460 | |
parent | ec7c9f45428737bfe1afec1f977f7f2d517e25ed (diff) | |
download | afterklein-wiki-dd41ce0aea48eb532db2292fe072f1119b41942a.tar.gz afterklein-wiki-dd41ce0aea48eb532db2292fe072f1119b41942a.zip |
still testing
-rw-r--r-- | Fourier Series.page | 8 |
1 files changed, 7 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index 4ece8ea..d81f78b 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -38,8 +38,14 @@ Rearranging, $\qquad\sin^3(x) = \frac{3\sin(x)-\sin(3x)}{4}$ Substituting back in the former equation, we get -$\sin(2x).\cos(x) = 2 \sin(x) - 2 [\frac{3\sin(x)-\sin(3x)}{4}]$ +$$ +\begin{array} +\sin(2x) & = & 2\sin(x) - 2 [\frac{3\sin(x)-\sin(3x)}{4}]\\ +& = & \frac{1}{2}\sin(x) + \frac{1}{2}\sin(3x)\\ +\end{array} +$$ + ##What is the Fourier series actually?</b> ##Why is Fourier series useful? </b> |