From dd41ce0aea48eb532db2292fe072f1119b41942a Mon Sep 17 00:00:00 2001 From: siveshs Date: Fri, 2 Jul 2010 13:20:41 +0000 Subject: still testing --- Fourier Series.page | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/Fourier Series.page b/Fourier Series.page index 4ece8ea..d81f78b 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -38,8 +38,14 @@ Rearranging, $\qquad\sin^3(x) = \frac{3\sin(x)-\sin(3x)}{4}$ Substituting back in the former equation, we get -$\sin(2x).\cos(x) = 2 \sin(x) - 2 [\frac{3\sin(x)-\sin(3x)}{4}]$ +$$ +\begin{array} +\sin(2x) & = & 2\sin(x) - 2 [\frac{3\sin(x)-\sin(3x)}{4}]\\ +& = & \frac{1}{2}\sin(x) + \frac{1}{2}\sin(3x)\\ +\end{array} +$$ + ##What is the Fourier series actually? ##Why is Fourier series useful? -- cgit v1.2.3