diff options
author | Opheliar99 <> | 2010-07-04 04:01:23 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-04 04:01:23 +0000 |
commit | 9cefc50326bfca41e5844321ead27af9f81020ba (patch) | |
tree | a65c530e303221c43fc246e321deeb140753bc17 | |
parent | ffd68f8715387b7c68cf07f7a27485d64b1e50e7 (diff) | |
download | afterklein-wiki-9cefc50326bfca41e5844321ead27af9f81020ba.tar.gz afterklein-wiki-9cefc50326bfca41e5844321ead27af9f81020ba.zip |
posted solutions of 2 and 3 in pset2
-rw-r--r-- | Problem Set 2.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index abb923b..51968f8 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -40,7 +40,7 @@ $\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$ 2. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, -$ \sin^4 x = \frac{{( e^{ix}-e^{-ix})}^{4}}{16}$, +$ {\sin}^4 x = \frac{{( e^{ix}-e^{-ix})}^{4}}{16}$, $ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. If we express any periodic function $f(x)$ as |