diff options
author | Opheliar99 <> | 2010-07-04 02:24:22 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-04 02:24:22 +0000 |
commit | ffd68f8715387b7c68cf07f7a27485d64b1e50e7 (patch) | |
tree | 529306786939b18383d252d3d529df02705c6bef | |
parent | e5e3a0620c1bee420a836df7255f3e453262056d (diff) | |
download | afterklein-wiki-ffd68f8715387b7c68cf07f7a27485d64b1e50e7.tar.gz afterklein-wiki-ffd68f8715387b7c68cf07f7a27485d64b1e50e7.zip |
posted solutions of 2 and 3 in pset2
-rw-r--r-- | Problem Set 2.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index 7918c1a..abb923b 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -45,7 +45,7 @@ $ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. If we express any periodic function $f(x)$ as -$f(x) = \sum a_n f_n(x)$, where $f_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$, $f_0(x) = \frac{1}{\sqrt{2\pi}}$, +$f(x) = \sum a_n f_n(x)$, where $f_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$ and $f_0(x) = \frac{1}{\sqrt{2\pi}}$, The Fourier coefficients for the above functions are: |