summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorOpheliar99 <>2010-07-04 02:24:22 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-04 02:24:22 +0000
commitffd68f8715387b7c68cf07f7a27485d64b1e50e7 (patch)
tree529306786939b18383d252d3d529df02705c6bef
parente5e3a0620c1bee420a836df7255f3e453262056d (diff)
downloadafterklein-wiki-ffd68f8715387b7c68cf07f7a27485d64b1e50e7.tar.gz
afterklein-wiki-ffd68f8715387b7c68cf07f7a27485d64b1e50e7.zip
posted solutions of 2 and 3 in pset2
-rw-r--r--Problem Set 2.page2
1 files changed, 1 insertions, 1 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page
index 7918c1a..abb923b 100644
--- a/Problem Set 2.page
+++ b/Problem Set 2.page
@@ -45,7 +45,7 @@ $ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$.
If we express any periodic function $f(x)$ as
-$f(x) = \sum a_n f_n(x)$, where $f_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$, $f_0(x) = \frac{1}{\sqrt{2\pi}}$,
+$f(x) = \sum a_n f_n(x)$, where $f_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$ and $f_0(x) = \frac{1}{\sqrt{2\pi}}$,
The Fourier coefficients for the above functions are: