diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 03:29:46 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 03:29:46 +0000 |
commit | 8f664a980dc1280d072171f494604e364c881157 (patch) | |
tree | a2fbe7a6814cd34bfdd78fcdc05e1c1d69872800 | |
parent | 1912254d86a8c3b7254873663aeb813e628d51d8 (diff) | |
download | afterklein-wiki-8f664a980dc1280d072171f494604e364c881157.tar.gz afterklein-wiki-8f664a980dc1280d072171f494604e364c881157.zip |
still testing
-rw-r--r-- | Fourier Series.page | 5 |
1 files changed, 5 insertions, 0 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index b12721d..e01441b 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -5,7 +5,12 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible?</b> To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: +<<<<<<< edited +$\sin^2(x) = ?$ +$\sin^2(x) = ?$ +======= $\sin^2(x) \tab = \tab ?$ +>>>>>>> 1912254d86a8c3b7254873663aeb813e628d51d8 $$\begin{array}{ccl} & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ |