diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 03:28:16 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 03:28:16 +0000 |
commit | 1912254d86a8c3b7254873663aeb813e628d51d8 (patch) | |
tree | f96e1aabc25b5a29f61fb8a58cb0ef4945461d14 | |
parent | 513975303a0099393c4de7a17cd0876fbefc8ba8 (diff) | |
download | afterklein-wiki-1912254d86a8c3b7254873663aeb813e628d51d8.tar.gz afterklein-wiki-1912254d86a8c3b7254873663aeb813e628d51d8.zip |
still testing
-rw-r--r-- | Fourier Series.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index e81cd7d..b12721d 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -5,7 +5,7 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible?</b> To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: -$\sin^2(x) = ?$ +$\sin^2(x) \tab = \tab ?$ $$\begin{array}{ccl} & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ |