summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-02 22:59:23 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-02 22:59:23 +0000
commit7b589152f4921892fe717a5c9e80d16aa0f3e8ec (patch)
treece18db146088ed744a51487a04bb6cdfbaf840ae
parent39f742738378e1679b9bb620fa7bbaf1652a1a6b (diff)
downloadafterklein-wiki-7b589152f4921892fe717a5c9e80d16aa0f3e8ec.tar.gz
afterklein-wiki-7b589152f4921892fe717a5c9e80d16aa0f3e8ec.zip
section 2 editing
-rw-r--r--Fourier Series.page5
1 files changed, 3 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index 041a83a..d7623b1 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -74,8 +74,9 @@ If it is possible to approximate the above function using a sum of sines and cos
It turns out that the above function can be approximated as the difference of two cosines, namely, $\cos^{2n}(x) + cos^{2n+1}(x)$
<center>![$\cos^{2n}(x)$](/cos10x.gif) ![$cos^{2n+1}(x)$](/cos11x.gif) </center>
-Summing these two functions we get the following:
-![$\cos^{2n}(x) + cos^{2n+1}(x)$](/cos10x-cos11x.gif)
+Summing these two functions we get the following:
+
+<center>![$\cos^{2n}(x) + cos^{2n+1}(x)$](/cos10x-cos11x.gif)</center>
##What is the Fourier series actually?</b>