diff options
| author | siveshs <siveshs@gmail.com> | 2010-07-02 22:59:23 +0000 | 
|---|---|---|
| committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 22:59:23 +0000 | 
| commit | 7b589152f4921892fe717a5c9e80d16aa0f3e8ec (patch) | |
| tree | ce18db146088ed744a51487a04bb6cdfbaf840ae | |
| parent | 39f742738378e1679b9bb620fa7bbaf1652a1a6b (diff) | |
| download | afterklein-wiki-7b589152f4921892fe717a5c9e80d16aa0f3e8ec.tar.gz afterklein-wiki-7b589152f4921892fe717a5c9e80d16aa0f3e8ec.zip  | |
section 2 editing
| -rw-r--r-- | Fourier Series.page | 5 | 
1 files changed, 3 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index 041a83a..d7623b1 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -74,8 +74,9 @@ If it is possible to approximate the above function using a sum of sines and cos  It turns out that the above function can be approximated as the difference of two cosines, namely, $\cos^{2n}(x) + cos^{2n+1}(x)$    <center>   </center>   -Summing these two functions we get the following: - +Summing these two functions we get the following:   +   +<center></center>  ##What is the Fourier series actually?</b>  | 
