From 7b589152f4921892fe717a5c9e80d16aa0f3e8ec Mon Sep 17 00:00:00 2001 From: siveshs Date: Fri, 2 Jul 2010 22:59:23 +0000 Subject: section 2 editing --- Fourier Series.page | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/Fourier Series.page b/Fourier Series.page index 041a83a..d7623b1 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -74,8 +74,9 @@ If it is possible to approximate the above function using a sum of sines and cos It turns out that the above function can be approximated as the difference of two cosines, namely, $\cos^{2n}(x) + cos^{2n+1}(x)$
![$\cos^{2n}(x)$](/cos10x.gif) ![$cos^{2n+1}(x)$](/cos11x.gif)
-Summing these two functions we get the following: -![$\cos^{2n}(x) + cos^{2n+1}(x)$](/cos10x-cos11x.gif) +Summing these two functions we get the following: + +
![$\cos^{2n}(x) + cos^{2n+1}(x)$](/cos10x-cos11x.gif)
##What is the Fourier series actually? -- cgit v1.2.3