diff options
author | Opheliar99 <> | 2010-07-04 04:30:07 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-04 04:30:07 +0000 |
commit | 778d0aeb6e80b1653f0fcf042d76711fd4d49a0d (patch) | |
tree | 903bae6f49ec854ddc1ec296a1f438b70df5c10a | |
parent | 58faa9b3a55c388ea876158176de46d1b154b0d0 (diff) | |
download | afterklein-wiki-778d0aeb6e80b1653f0fcf042d76711fd4d49a0d.tar.gz afterklein-wiki-778d0aeb6e80b1653f0fcf042d76711fd4d49a0d.zip |
posted solutions of 2 and 3 in pset2
-rw-r--r-- | Problem Set 2.page | 1 |
1 files changed, 1 insertions, 0 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index de38296..ed138ec 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -44,6 +44,7 @@ $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, $\sin^4 x = \frac{{( e^{ix}-e^{-ix} )}^4}{16}$ $= \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. +\\ If we express any periodic function $f(x)$ as $f(x) = \sum a_n f_n(x)$, where $f_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$ and $f_0(x) = \frac{1}{\sqrt{2\pi}}$, |