summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-02 03:40:34 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-02 03:40:34 +0000
commit75ddf72b7efe601ec7d2f93d19bbf73b0a43a4c3 (patch)
tree1134d6f39b397f9d45db445d05914b4920de8fad
parentb94327a57c53dce7876b20be50d7380b8a702a14 (diff)
downloadafterklein-wiki-75ddf72b7efe601ec7d2f93d19bbf73b0a43a4c3.tar.gz
afterklein-wiki-75ddf72b7efe601ec7d2f93d19bbf73b0a43a4c3.zip
still testing
-rw-r--r--Fourier Series.page4
1 files changed, 2 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index fc77e18..0ce4399 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -5,13 +5,13 @@ We first begin with a few basic identities on the size of sets. Show that the se
##Why Fourier series is plausible?</b>
To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines:
-$\qquad\qquad\sin^2(x) = ? $
+$\qquad\sin^2(x) = ?$
Based on the double angle formula, $\cos(2x) = 1 - 2 \sin^2(x)$
Rearranging,
-$\sin^2(x) = \frac{1-\cos(2x)}{2}$
+$\qquad\sin^2(x) = \frac{1-\cos(2x)}{2}$
##What is the Fourier series actually?</b>