summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-02 03:39:59 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-02 03:39:59 +0000
commitb94327a57c53dce7876b20be50d7380b8a702a14 (patch)
tree3844cc31a400c9af36fee581dc38cca291b9ab89
parentfb304be04f116b48e454f5b0219d80680908f28a (diff)
downloadafterklein-wiki-b94327a57c53dce7876b20be50d7380b8a702a14.tar.gz
afterklein-wiki-b94327a57c53dce7876b20be50d7380b8a702a14.zip
still testing
-rw-r--r--Fourier Series.page10
1 files changed, 6 insertions, 4 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index 00ad189..fc77e18 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -5,10 +5,12 @@ We first begin with a few basic identities on the size of sets. Show that the se
##Why Fourier series is plausible?</b>
To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines:
-
-$\qquad\qquad\sin^2(x) = ? $
-Based on the double angle formula, $\cos(2x) = 1 - 2 \sin^2(x)$
-Rearranging,
+$\qquad\qquad\sin^2(x) = ? $
+
+Based on the double angle formula, $\cos(2x) = 1 - 2 \sin^2(x)$
+
+Rearranging,
+
$\sin^2(x) = \frac{1-\cos(2x)}{2}$
##What is the Fourier series actually?</b>