diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 03:39:59 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 03:39:59 +0000 |
commit | b94327a57c53dce7876b20be50d7380b8a702a14 (patch) | |
tree | 3844cc31a400c9af36fee581dc38cca291b9ab89 | |
parent | fb304be04f116b48e454f5b0219d80680908f28a (diff) | |
download | afterklein-wiki-b94327a57c53dce7876b20be50d7380b8a702a14.tar.gz afterklein-wiki-b94327a57c53dce7876b20be50d7380b8a702a14.zip |
still testing
-rw-r--r-- | Fourier Series.page | 10 |
1 files changed, 6 insertions, 4 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index 00ad189..fc77e18 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -5,10 +5,12 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible?</b> To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: - -$\qquad\qquad\sin^2(x) = ? $ -Based on the double angle formula, $\cos(2x) = 1 - 2 \sin^2(x)$ -Rearranging, +$\qquad\qquad\sin^2(x) = ? $ + +Based on the double angle formula, $\cos(2x) = 1 - 2 \sin^2(x)$ + +Rearranging, + $\sin^2(x) = \frac{1-\cos(2x)}{2}$ ##What is the Fourier series actually?</b> |