diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 03:11:29 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 03:11:29 +0000 |
commit | 756229d06c432190b58cfde24072fd39a1ea2d12 (patch) | |
tree | 481fbff77a3911f2158aeb6cea083d928d62410a | |
parent | 5a36c2894b4612f4ed649a3f79356077c745156a (diff) | |
download | afterklein-wiki-756229d06c432190b58cfde24072fd39a1ea2d12.tar.gz afterklein-wiki-756229d06c432190b58cfde24072fd39a1ea2d12.zip |
srys
-rw-r--r-- | Fourier Series.page | 1 |
1 files changed, 0 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index ee45251..2496aa4 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -7,7 +7,6 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible?</b> To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: $1. \cos(2x) = 1 - 2 \sin^2(x)$ -$\therefore \sin^2(x) = 1/2 - \cos(2x)/2$ \begin{eqnarray} x = 1 \\ |