From 756229d06c432190b58cfde24072fd39a1ea2d12 Mon Sep 17 00:00:00 2001 From: siveshs Date: Fri, 2 Jul 2010 03:11:29 +0000 Subject: srys --- Fourier Series.page | 1 - 1 file changed, 1 deletion(-) diff --git a/Fourier Series.page b/Fourier Series.page index ee45251..2496aa4 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -7,7 +7,6 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible? To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: $1. \cos(2x) = 1 - 2 \sin^2(x)$ -$\therefore \sin^2(x) = 1/2 - \cos(2x)/2$ \begin{eqnarray} x = 1 \\ -- cgit v1.2.3