aboutsummaryrefslogtreecommitdiffstats
path: root/minimal.rs
blob: 40c776b52edbb8c318132c00ca3e78530a8065b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

// A partial Scheme implementation in Rust
// Build with: rustc minimal.rs -o minimal-rust

use std::io;
use std::io::Write;
use std::collections::HashMap;

//////////// Types and Constants

// There doesn't seem to be a symbol or quote type in Rust, so i'm going to use strings and vectors

// XXX: how to avoid the '16' here?
const SCHEME_BUILTINS: [&'static str; 16] = ["lambda", "quote", "cond", "else", "cons", "car", "cdr",
    "null?", "eq?", "atom?", "zero?", "number?", "+", "-", "*", "/"];

#[derive(Clone, PartialEq)]
enum SchemeExpr<'a> {
    SchemeNull,
    SchemeTrue,
    SchemeFalse,
    SchemeNum(f64),
    SchemeBuiltin(&'a str),
    SchemeSymbol(&'a str),
    SchemeStr(&'a str),
    SchemeProcedure(
        Vec<&'a str>,
        Vec<SchemeExpr<'a>>,
        HashMap<&'a str, SchemeExpr<'a>>),
    SchemeList(Vec<SchemeExpr<'a>>),
    SchemeQuote(Vec<SchemeExpr<'a>>),
}

//////////// Lexing, Parsing, and Printing

fn is_scheme_whitespace(c: char) -> bool{
    " \r\n".find(c) != None
}
fn is_scheme_sep(c: char) -> bool {
    "()".find(c) != None
}

fn is_valid_symbol(s: &str) -> bool {
    // TODO: this could be an 'any' or 'filter' call?
    if s.len() == 0 {
        return false;
    }
    for c in s.chars() {
        if !c.is_alphabetic() && c != '-' {
            return false;
        }
    }
    return true;
}

// TODO: need to expand prefix notation stuff like `(1 2 3) to (quote 1 2 3) here?
fn scheme_tokenize<'a>(raw_str: &'a str) -> Result<Vec<&'a str>, &'static str> {
    let mut ret = Vec::<&str>::new();
    let mut food: usize = 0;
    let mut quoted: bool = false;
    for (i, c) in raw_str.chars().enumerate() {
        if quoted {
            if c == '"' && raw_str.chars().collect::<Vec<char>>()[i-1] != '\\' {
                ret.push(&raw_str[i-food-1..i+1]);
                quoted = false;
                food = 0;
            } else if (raw_str.len() == i+1) {
                return Err("unmatched quote char");
            } else {
                food += 1;
            }
        } else if c == '"' {
            if food > 0 {
                return Err("unexpected quote char");
            }
            if (raw_str.len() == i+1) {
                return Err("unmatched (trailing) quote char");
            }
            quoted = true;
        } else if is_scheme_whitespace(c) || is_scheme_sep(c) {
            if food > 0 {
                ret.push(&raw_str[i-food..i]);
            }
            if is_scheme_sep(c) {
                ret.push(&raw_str[i..i+1]);
            }
            food = 0;
        } else if (raw_str.len() == i+1) {
            ret.push(&raw_str[i-food..]);
        } else {
            food += 1;
        }
    }
    return Ok(ret);
}

fn scheme_parse_token(token: &str) -> Result<SchemeExpr, &'static str> {

    // First match on easy stuff
    match token {
        "#t" => return Ok(SchemeExpr::SchemeTrue),
        "#f" => return Ok(SchemeExpr::SchemeFalse),
        ")"  => return Ok(SchemeExpr::SchemeNull),
        _ => ()
    }

    // Is it a builtin?
    if SCHEME_BUILTINS.contains(&token) {
        return Ok(SchemeExpr::SchemeBuiltin(token));
    }

    // Try to parse as a number
    match token.parse::<f64>() {
        Ok(x) => return Ok(SchemeExpr::SchemeNum(x)),
        Err(_) => ()
    }

    // Is it a string?
    if token.starts_with("\"") && token.ends_with("\"") {
        return Ok(SchemeExpr::SchemeStr(token));
    }

    // If it's all alphas, must be a symbol
    if is_valid_symbol(token) {
        return Ok(SchemeExpr::SchemeSymbol(token));
    }

    return Err("unparsable token");
}

fn scheme_parse<'a>(tokens: &Vec<&'a str>, depth: u32) -> Result<(SchemeExpr<'a>, usize), &'static str> {
    let mut ret = Vec::<SchemeExpr>::new();
    let mut i: usize = 0;
    if tokens.len() == 0  {
        return Ok((SchemeExpr::SchemeNull, 0));
    } else if tokens.len() == 1 {
        let expr = try!(scheme_parse_token(tokens[0]));
        return Ok((expr, 1));
    }
    while i < tokens.len() {
        match tokens[i] {
            "(" => {
                let (expr, skip) = try!(scheme_parse(&tokens[i+1..].to_vec(), depth+1));
                ret.push(expr);
                i += skip;},
            ")" => {
                if depth == 0 {
                    return Err("missing an open bracket");
                }
                return Ok((SchemeExpr::SchemeList(ret), i+1));},
            token => {
                let expr = try!(scheme_parse_token(token));
                ret.push(expr);
            }
        }
        i += 1;
    }
    if depth > 0 {
        return Err("missing a close bracket");
    }
    let rlen = ret.len();
    if depth == 0 && rlen == 1 {
        return Ok((ret.pop().unwrap(), rlen));
    } else {
        return Ok((SchemeExpr::SchemeList(ret), rlen));
    }
}

fn scheme_repr(ast: &SchemeExpr) -> Result<String, &'static str> {
    return match ast {
        &SchemeExpr::SchemeTrue => Ok("#t".to_string()),
        &SchemeExpr::SchemeFalse => Ok("#f".to_string()),
        &SchemeExpr::SchemeNull => Ok("'()".to_string()),
        &SchemeExpr::SchemeNum(num) => Ok(format!("{}", num).to_string()),
        &SchemeExpr::SchemeBuiltin(b)=> Ok(b.to_string()),
        &SchemeExpr::SchemeStr(s)=> Ok(s.to_string()),
        &SchemeExpr::SchemeSymbol(s)=> Ok(s.to_string()),
        &SchemeExpr::SchemeProcedure(ref binds, ref body, _) => {
            let mut ret = "(lambda (".to_string();
            for bind in binds {
                ret = ret + &bind + " ";
            }
            ret = ret + ") ";
            for expr in body {
                ret = ret + &try!(scheme_repr(&expr));
            }
            ret = ret + ")";
            Ok(ret)
        },
        &SchemeExpr::SchemeList(ref list) => {
            let mut ret: String =
                list.iter().fold("(".to_string(),
                                 |acc, ref el| acc + " " + &scheme_repr(&el).unwrap());
            ret.push_str(" )");
            Ok(ret)
        },
        &SchemeExpr::SchemeQuote(ref list) => {
            let mut ret: String =
                list.iter().fold("(quote ".to_string(),
                                 |acc, ref el| acc + " " + &scheme_repr(&el).unwrap());
            ret.push_str(" )");
            Ok(ret)
        },
    }
}

//////////// Expression Evaluation

fn quote_action<'a>(list: &Vec<SchemeExpr<'a>>, ctx: HashMap<&str, SchemeExpr<'a>>) -> Result<SchemeExpr<'a>, &'static str> {
    // XXX: why can't I '.map()' here? (try .iter().skip(1)...)
    let mut body = Vec::<SchemeExpr>::new();
    for el in list[1..].to_vec() {
        body.push(el.clone());
    }
    Ok(SchemeExpr::SchemeList(body))
}

fn cond_action<'a>(list: &Vec<SchemeExpr<'a>>, ctx: HashMap<&'a str, SchemeExpr<'a>>) -> Result<SchemeExpr<'a>, &'static str> {
    for line in list.iter().skip(1) {
        match line {
            &SchemeExpr::SchemeList(ref inner) => {
                if inner.len() != 2 {
                    return Err("cond must contain tuples of (predicate, value) (len !=2)");
                }
                let pred = &inner[0];
                let val = &inner[1];
                let m = try!(scheme_meaning(&pred, ctx.clone()));
                if m != SchemeExpr::SchemeFalse && m != SchemeExpr::SchemeNull {
                    return scheme_meaning(&val, ctx);
                } },
            _ => {
                return Err("cond must contain tuples of (predicate, value)"); },
        }
    }
    // "undefined", return empty tuple
    Ok(SchemeExpr::SchemeNull)
}

fn lambda_action<'a>(list: &Vec<SchemeExpr<'a>>, ctx: HashMap<&'a str, SchemeExpr<'a>>) -> Result<SchemeExpr<'a>, &'static str> {
    if list.len() < 3 {
        return Err("lambda must have a bind and at least one body expr");
    }
    let mut binds = Vec::<&str>::new();
    let bind_list = match &list[1] {
        &SchemeExpr::SchemeList(ref bl) => bl,
        _ => { return Err("second arg to lambda must be a list of binds") },
    };
    for bind in bind_list {
        match bind {
            &SchemeExpr::SchemeSymbol(name) =>
                binds.push(name),
            _ => return Err("lambda binds must all be non-builtin symbols")
        }
    }
    let mut body = list.iter().skip(2).map(|x| x.clone()).collect();
    Ok(SchemeExpr::SchemeProcedure(binds, body, ctx.clone()))
}

fn apply_math_op<'a>(action: &'a str, args: Vec<SchemeExpr>) -> Result<SchemeExpr<'a>, &'static str> {
    if args.len() < 2 {
        return Err("math builtins take two or more args");
    }
    let mut vals = Vec::<f64>::new();
    for arg in args {
        match arg {
            SchemeExpr::SchemeNum(x) => { vals.push(x) },
            _ => { return Err("math builtins take only numerical types") },
        }
    }

    let ret: f64 = match action {
        "+"     => vals.iter().fold(0., |a, &b| a+b),
        "*"     => vals.iter().fold(1., |a, &b| a * b),
        "-"     => vals[1..].iter().fold(vals[0], |a, &b| a - b),
        "/"     => vals[1..].iter().fold(vals[0], |a, &b| a / b),
        _ => { return Err("unimplemented math operation"); },
    };
    Ok(SchemeExpr::SchemeNum(ret))
}

fn apply_typecheck<'a>(action: &'a str, args: Vec<SchemeExpr>) -> Result<SchemeExpr<'a>, &'static str> {
    if args.len() != 1 {
        return Err("typecheck builtins take a single argument");
    }
    let arg: &SchemeExpr = &args[0];
    let ret: bool = match action {
        "null?"   => *arg == SchemeExpr::SchemeNull,
        "zero?"   => *arg == SchemeExpr::SchemeNum(0.0),
        "number?" => match *arg {
            SchemeExpr::SchemeNum(_) => true,
            _ => false},
        "atom?"   => match *arg {
            SchemeExpr::SchemeNull |
                SchemeExpr::SchemeTrue |
                SchemeExpr::SchemeFalse |
                SchemeExpr::SchemeNum(_) => true,
            _ => false},
        _ => { return Err("unimplemented typecheck builtin"); },
    };
    if ret {
        Ok(SchemeExpr::SchemeTrue)
    } else {
        Ok(SchemeExpr::SchemeFalse)
    }
}

fn apply_action<'a>(list: &Vec<SchemeExpr<'a>>, ctx: HashMap<&'a str, SchemeExpr<'a>>) -> Result<SchemeExpr<'a>, &'static str> {
    if list.len() == 0 {
        // TODO: is this correct?
        return Ok(SchemeExpr::SchemeNull);
    }
    let action = &list[0];
    let args: Vec<SchemeExpr> = list.iter().skip(1).map(|x| scheme_meaning(x, ctx.clone()).unwrap()).collect();
    match action {
        &SchemeExpr::SchemeBuiltin(builtin) => {
            return match builtin {
                "+" | "-" | "*" | "/" => apply_math_op(builtin, args),
                "null?" | "number?" | "zero?" | "atom?" => apply_typecheck(builtin, args),
                "eq?" => {
                    if args.len() != 2 {
                        return Err("eq? takes only two arguments");
                    }
                    if args[0] == args[1] {
                        return Ok(SchemeExpr::SchemeTrue)
                    } else {
                        return Ok(SchemeExpr::SchemeFalse)
                    }
                },
                "car" => {
                    if args.len() != 1 {
                        return Err("car takes a single list argument");
                    }
                    match &args[0] {
                        &SchemeExpr::SchemeList(ref list) => {
                            Ok(list[0].clone())
                        },
                        _ => Err("cdr takes only lists")
                    }
                },
                "cdr" => {
                    if args.len() != 1 {
                        return Err("cdr takes a single list argument");
                    }
                    match &args[0] {
                        &SchemeExpr::SchemeList(ref list) => {
                            Ok(SchemeExpr::SchemeList(list[1..].to_vec()))
                        },
                        _ => Err("car takes only lists")
                    }
                },
                "cons" => {
                    if args.len() != 2 {
                        return Err("cons takes two arguments");
                    }
                    match &args[1] {
                        &SchemeExpr::SchemeList(ref list) => {
                            let mut ret = vec![args[0].clone()];
                            ret.extend_from_slice(list);
                            Ok(SchemeExpr::SchemeList(ret))
                        },
                        _ => Err("cdr takes only lists")
                    }
                },
                _ => Err("unimplemented builtin"),
            }; },
        &SchemeExpr::SchemeList(_) => {
            let procedure: SchemeExpr = try!(scheme_meaning(&action, ctx.clone()));
            match procedure {
                SchemeExpr::SchemeProcedure(binds, body, proc_ctx) => {
                    return apply_procedure(&args, &binds, body, proc_ctx.clone()); },
                _ => { return Err("non-procedure at head of expression"); },
                } },
        _ => { return Err("apply called with something non-applicable"); },
    }
}

fn apply_procedure<'a>(args: &Vec<SchemeExpr<'a>>, binds: &Vec<&'a str>, body: Vec<SchemeExpr<'a>>, ctx: HashMap<&'a str, SchemeExpr<'a>>) -> Result<SchemeExpr<'a>, &'static str> {
    // This block of code implements procedure (lambda) application
    if body.len() != 1 {
        return Err("prodedure must have single-expression body");
    }
    if binds.len() != args.len() {
        return Err("wrong number of args to procedure");
    }
    let mut closure = ctx.clone();
    for (name, arg) in binds.iter().zip(args) {
        closure.insert(name, arg.clone());
    }
    return scheme_meaning(&body[0], closure);
}

fn scheme_meaning<'a>(ast: &SchemeExpr<'a>, ctx: HashMap<&'a str, SchemeExpr<'a>>) -> Result<SchemeExpr<'a>, &'static str> {
    return match ast {
            // "identity actions"
        &SchemeExpr::SchemeTrue         => Ok(ast.clone()),
        &SchemeExpr::SchemeFalse        => Ok(ast.clone()),
        &SchemeExpr::SchemeNull         => Ok(ast.clone()),
        &SchemeExpr::SchemeStr(_)       => Ok(ast.clone()),
        &SchemeExpr::SchemeNum(_)       => Ok(ast.clone()),
        &SchemeExpr::SchemeBuiltin(_)   => Ok(ast.clone()),
        &SchemeExpr::SchemeProcedure(_, _, _) => Ok(ast.clone()),
        &SchemeExpr::SchemeQuote(ref list)
                                        => Ok(SchemeExpr::SchemeList(list.clone())),
        &SchemeExpr::SchemeSymbol(sym)  => match ctx.get(sym) {
            // the "lookup action"
            Some(val) => Ok(val.clone()),
            None => Err("symbol not defined"),
        },
        &SchemeExpr::SchemeList(ref list) => {
            if list.len() == 0 {
                return Ok(SchemeExpr::SchemeNull);
            }
            let list = list.clone();
            match list[0] {
                SchemeExpr::SchemeBuiltin("quote") =>
                    quote_action(&list, ctx),
                SchemeExpr::SchemeBuiltin("cond") =>
                    cond_action(&list, ctx),
                SchemeExpr::SchemeBuiltin("lambda") =>
                    lambda_action(&list, ctx),
                SchemeExpr::SchemeBuiltin(_) =>
                    apply_action(&list, ctx),
                SchemeExpr::SchemeProcedure(_, _, _) =>
                    apply_action(&list, ctx),
                SchemeExpr::SchemeList(_) =>
                    apply_action(&list, ctx),
                _ => Ok(SchemeExpr::SchemeNull)
            }
        },
    }
}

fn scheme_eval<'a>(ast: &'a SchemeExpr) -> Result<SchemeExpr<'a>, &'static str> {
    let ctx = HashMap::<&str, SchemeExpr>::new();
    Ok(try!(scheme_meaning(ast, ctx)))
}

//////////// Top-Level Program

fn main() {

    let stdin = io::stdin();
    let mut stdout = io::stdout();

    loop {
        let raw_input = &mut String::new();
        stdout.write(b"\nminimal-rust> ").unwrap();
        stdout.flush().unwrap();
        stdin.read_line(raw_input).unwrap();
        let raw_input = raw_input;  // UGH
        if raw_input.len() == 0 {
            stdout.write(b"\nCiao!\n").unwrap();
            return;
        }
        let tokens = match scheme_tokenize(&raw_input) {
            Ok(tokens) => {
                println!("Tokens: {}", tokens.join(", ")); // debug
                tokens},
            Err(e) => {
                println!("couldn't tokenize: {}", e);
                continue}};
        let ast = match scheme_parse(&tokens, 0) {
            Ok((ast, _)) => {
                println!("AST: {}", scheme_repr(&ast).unwrap());
                ast},
            Err(e) => {
                println!("couldn't parse: {}", e);
                continue}};
        let resp = match scheme_eval(&ast) {
            Ok(x) => x,
            Err(e) => {
                println!("couldn't eval: {}", e);
                continue}};
        println!("{}", scheme_repr(&resp).unwrap());
    }
}