1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
# skate
The skate suite of command line tools have been written for various parts of the
citation graph pipeline.
## Tools
### skate-wikipedia-doi
TSV (page title, DOI, doc) from wikipedia refs.
```
$ parquet-tools cat --json minimal_dataset.parquet | skate-wikipedia-doi
Rational point 10.1515/crll.1988.386.32 {"type_of_citation" ...
Cubic surface 10.2140/ant.2007.1.393 {"type_of_citation" ...
```
### skate-bref-id
Temporary helper to add a key to a biblioref document.
### skate-cluster
Converts a sorted key output into a jsonlines clusters.
For example, this:
id123 somekey123 {"a":"b", ...}
id391 somekey123 {"x":"y", ...}
would turn into (a single line containing all docs with the same key).
{"k": "somekey123", "v": [{"a":"b", ...},{"x":"y",...}]}
A single line cluster is easier to parallelize (e.g. for verification, etc.).
### skate-derive-key
skate-derive-key derives a key from release entity JSON documents.
```
$ skate-derive-key < release_entities.jsonlines > docs.tsv
```
Result will be a three column TSV (ident, key, doc).
```
---- ident --------------- ---- key --------- ---- doc ----------
4lzgf5wzljcptlebhyobccj7ru 2568diamagneticsus {"abstracts":[],...
```
After this step:
* sort by key, e.g. `LC_ALL=C sort -k2,2 -S 35% --parallel 6 --compress-program pzstd ...`
* cluster, e.g. `skate-cluster ...`
### skate-from-unstructured
Takes a refs file and plucks out identifiers from unstructured field.
### skate-ref-to-release
Converts a ref document to a release. Part of first run, merging refs and releases.
### skate-to-doi
Sanitize DOI in tabular file.
### skate-verify
Run various matching and verification algorithms.
## Problem
Handling a TB of JSON and billions of documents, especially for the following
use case:
* deriving a key from a document
* sort documents by (that) key
* clustering and verifing documents in clusters
The main use case is match candidate generation and verification for fuzzy
matching, especially for building a citation graph dataset from
[fatcat](https://fatcat.wiki).
![](static/two_cluster_synopsis.png)
|