1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
//////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2011, Andrew "bunnie" Huang
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
// SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//////////////////////////////////////////////////////////////////////////////
`timescale 1 ns / 1 ps
// generates a stream of hdcp cipher data
module hdcp_cipher(
input wire clk,
input reset,
input [55:0] Km, // shared secret value
input [63:0] An, // session random number
input hdcpBlockCipher_init, // pulsed only one cycle
input authentication, // pulsed one cycle same time as above
input hdcpRekeyCipher, // pulsed one cycle to initiate rekey
input hdcpStreamCipher,// advance cipher state one clock
output [23:0] pr_data, // pseudorandom data output
output reg stream_ready // asserted when stream is ready (after init seq)
);
wire lfsr_out;
wire [23:0] ostream;
wire [83:0] Bo_wire;
parameter INIT = 12'b1 << 0;
parameter BLOCK_1 = 12'b1 << 1;
parameter BLOCK_2 = 12'b1 << 2;
parameter BLOCK_3 = 12'b1 << 3;
parameter BLOCK_4 = 12'b1 << 4;
parameter BLOCK_5 = 12'b1 << 5;
parameter BLOCK_6 = 12'b1 << 6;
parameter BLOCK_7 = 12'b1 << 7;
parameter BLOCK_8 = 12'b1 << 8;
parameter BLOCK_9 = 12'b1 << 9;
parameter GET_M = 12'b1 << 10;
parameter STREAM = 12'b1 << 11;
parameter REKEY = 12'b1 << 12;
parameter nSTATES = 13;
reg [(nSTATES-1):0] cstate = {{(nSTATES-1){1'b0}},1'b1};
reg [(nSTATES-1):0] nstate;
// `define SIMULATION 1
`ifdef SIMULATION
// synthesis translate_off
reg [8*20:1] state_ascii = "INIT ";
always @(cstate) begin
if (cstate == INIT ) state_ascii <= "INIT ";
else if (cstate == BLOCK_1 ) state_ascii <= "BLOCK_1 ";
else if (cstate == BLOCK_2 ) state_ascii <= "BLOCK_2 ";
else if (cstate == BLOCK_3 ) state_ascii <= "BLOCK_3 ";
else if (cstate == BLOCK_4 ) state_ascii <= "BLOCK_4 ";
else if (cstate == BLOCK_5 ) state_ascii <= "BLOCK_5 ";
else if (cstate == BLOCK_6 ) state_ascii <= "BLOCK_6 ";
else if (cstate == BLOCK_7 ) state_ascii <= "BLOCK_7 ";
else if (cstate == BLOCK_8 ) state_ascii <= "BLOCK_8 ";
else if (cstate == BLOCK_9 ) state_ascii <= "BLOCK_9 ";
else if (cstate == GET_M ) state_ascii <= "GET_M ";
else if (cstate == STREAM ) state_ascii <= "STREAM ";
else if (cstate == REKEY ) state_ascii <= "REKEY ";
else state_ascii <= "WTF ";
end
// synthesis translate_on
`endif // `ifdef SIMULATION
reg [5:0] statecnt;
reg rekey;
reg load_block;
reg load_56; // load 56 or 80 bits...
reg load_lfsr;
reg advance_lfsr;
reg advance_block;
reg [83:0] Ks;
reg [83:0] Ki;
reg [63:0] Mi;
reg load_ks;
reg auth_mode;
reg [83:0] Kmod;
always @ (posedge clk or posedge reset) begin
if (reset)
cstate <= INIT;
else
cstate <=#1 nstate;
end
hdcp_lfsr lfsr( .clk(clk), .reset(reset),
.iv(auth_mode ? Ks[55:0] : Ki[55:0]),
.init_iv(load_lfsr),
.advance(advance_lfsr),
.onebit(lfsr_out));
hdcp_block block( .clk(clk), .reset(reset),
.load(load_block),
.B(auth_mode ? {20'b0,An} : {20'b0,Mi}),
.K(Kmod),
.Bo(Bo_wire),
.rekey(rekey),
.lfsr_in(lfsr_out),
.ostream(ostream),
.advance(advance_block));
assign pr_data = ostream;
always @ (*) begin
case ({auth_mode,load_56}) //synthesis parallel_case full_case
2'b00: begin // not auth mode, load 84 bits
Kmod = Ki;
end
2'b01: begin // not auth mode, but load 56 bits only
Kmod = {28'b0,Ks[55:0]};
end
2'b10: begin // auth mode, load 84 bits
Kmod = Ks;
end
2'b11: begin // auth mode, load only 56 bits
Kmod = {28'b0,Km[55:0]};
end
endcase // case ({auth_mode,load_56})
end // always @ (*)
always @ (*) begin
case (cstate) //synthesis parallel_case full_case
INIT: begin
nstate = hdcpBlockCipher_init ? BLOCK_1 : INIT;
end
BLOCK_1: begin
nstate = BLOCK_2;
end
BLOCK_2: begin
nstate = (statecnt >= 6'd47) ? BLOCK_3: BLOCK_2;
end
BLOCK_3: begin
nstate = BLOCK_4;
end
BLOCK_4: begin
nstate = BLOCK_5;
end
BLOCK_5: begin
nstate = BLOCK_6;
end
BLOCK_6: begin
nstate = BLOCK_7;
end
BLOCK_7: begin
nstate = BLOCK_8;
end
BLOCK_8: begin
nstate = (statecnt >= 6'd55) ? BLOCK_9: BLOCK_8;
end
BLOCK_9: begin
nstate = GET_M;
end
GET_M: begin
nstate = STREAM;
end
STREAM: begin
if( hdcpBlockCipher_init ) begin
nstate = BLOCK_1;
end else if( hdcpRekeyCipher ) begin
nstate = REKEY;
end else begin
nstate = STREAM;
end
end
REKEY: begin
if( hdcpBlockCipher_init ) begin
nstate = BLOCK_1;
end else begin
nstate = (statecnt >= 6'd55) ? STREAM : REKEY;
end
end
endcase // case (cstate)
end
always @ (posedge clk or posedge reset) begin
if( reset ) begin
statecnt <=#1 6'b0;
rekey <=#1 1'b0;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b0;
auth_mode <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end else begin
case (cstate) // synthesis parallel_case full_case
INIT: begin
statecnt <=#1 6'b0;
rekey <=#1 1'b0;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b0;
auth_mode <=#1 authentication;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
BLOCK_1: begin
statecnt <=#1 6'b0;
rekey <=#1 1'b0;
load_block <=#1 1'b1; // load B & K regs of block module
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b0;
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b1;
end
BLOCK_2: begin
statecnt <=#1 statecnt + 1; // 48 clocks
rekey <=#1 1'b0;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b1;
load_ks <=#1 1'b0;
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
BLOCK_3: begin
statecnt <=#1 0;
rekey <=#1 1'b0;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b1; // save Ks, Ki, and B=>K
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
BLOCK_4: begin
statecnt <=#1 0;
rekey <=#1 1'b0;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b1; // dup of above
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
BLOCK_5: begin
statecnt <=#1 0;
rekey <=#1 1'b0;
load_block <=#1 1'b1; // reload block cipher
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b0;
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
BLOCK_6: begin
statecnt <=#1 0;
rekey <=#1 1'b0;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b0;
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b1; // init lfsr
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
BLOCK_7: begin
statecnt <=#1 0;
rekey <=#1 1'b1; // assert rekey
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b0;
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
BLOCK_8: begin
statecnt <=#1 statecnt + 1; // 56 clocks
rekey <=#1 1'b1;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b1;
advance_block <=#1 1'b1;
load_ks <=#1 1'b0;
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
BLOCK_9: begin
statecnt <=#1 0;
rekey <=#1 1'b0; // de-assert rekey
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b0;
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end // case: BLOCK_9
GET_M: begin // one cycle wait to get M register loaded properly
statecnt <=#1 0;
rekey <=#1 1'b0;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b0;
advance_block <=#1 1'b0;
load_ks <=#1 1'b0;
auth_mode <=#1 1'b0;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
STREAM: begin
statecnt <=#1 0;
rekey <=#1 1'b0;
load_block <=#1 1'b0;
advance_lfsr <=#1 hdcpStreamCipher;
advance_block <=#1 hdcpStreamCipher;
load_ks <=#1 1'b0;
auth_mode <=#1 authentication;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b1;
load_56 <=#1 1'b0;
end
REKEY: begin
statecnt <=#1 statecnt + 1;
rekey <=#1 1'b1;
load_block <=#1 1'b0;
advance_lfsr <=#1 1'b1;
advance_block <=#1 1'b1;
load_ks <=#1 1'b0;
auth_mode <=#1 auth_mode;
load_lfsr <=#1 1'b0;
stream_ready <=#1 1'b0;
load_56 <=#1 1'b0;
end
endcase // case (cstate)
end
end // always @ (posedge clk or posedge reset)
always @(posedge clk or posedge reset) begin
if( reset ) begin
Ks <= 80'b0;
Ki <= 80'b0;
end else begin
// if( hdcpBlockCipher_init ) begin
// Ks <= (authentication | auth_mode) ? {28'b0,Km} : Ks;
// Ki <= 80'b0;
// end else if( load_ks && auth_mode ) begin
if( load_ks && auth_mode ) begin
Ks <= Bo_wire;
Ki <= 80'b0;
end else if( load_ks && !auth_mode ) begin
Ks <= Ks;
Ki <= Bo_wire;
end else begin
Ks <= Ks;
Ki <= Ki;
end
end
end // always @ (posedge clk or posedge reset)
always @(posedge clk or posedge reset) begin
if( reset ) begin
Mi <= 80'b0;
end else begin
if( (cstate == BLOCK_8) || (cstate == BLOCK_9) || (cstate == GET_M) ) begin
Mi[15:0] <= ostream[15:0];
Mi[31:16] <= Mi[15:0];
Mi[47:32] <= Mi[31:16];
Mi[63:48] <= Mi[47:32];
end else begin
Mi <= Mi;
end
end // else: !if( reset )
end // always @ (posedge clk or posedge reset)
endmodule // hdcp_cipher
|