1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
/* insert license */
#include "usb_callbacks.h"
#include "usb_lib.h"
#include "descriptors.h"
#include "usb_config.h"
#include "usb.h"
#include "usb_hardware.h"
ONE_DESCRIPTOR Device_Descriptor = {
(uint8*)&usbVcomDescriptor_Device,
sizeof(USB_Descriptor_Device)
};
ONE_DESCRIPTOR Config_Descriptor = {
(uint8*)&usbVcomDescriptor_Config,
0x43//sizeof(USB_Descriptor_Config)
};
ONE_DESCRIPTOR String_Descriptor[3] = {
{(uint8*)&usbVcomDescriptor_LangID, USB_DESCRIPTOR_STRING_LEN(1)},
{(uint8*)&usbVcomDescriptor_iManufacturer,USB_DESCRIPTOR_STRING_LEN(8)},
{(uint8*)&usbVcomDescriptor_iProduct, USB_DESCRIPTOR_STRING_LEN(8)}
};
uint8 last_request = 0;
USB_Line_Coding line_coding = {
bitrate: 115200,
format: 0x00, /* stop bits-1 */
paritytype: 0x00,
datatype: 0x08
};
uint8 vcomBufferRx[VCOM_RX_EPSIZE];
volatile uint8 countTx = 0;
volatile uint8 recvBufIn = 0;
volatile uint8 recvBufOut = 0;
volatile uint8 maxNewBytes = VCOM_RX_EPSIZE;
RESET_STATE reset_state = DTR_UNSET;
uint8 line_dtr_rts = 0;
void vcomDataTxCb(void) {
/* do whatever after data has been sent to host */
/* allows usbSendBytes to stop blocking */
countTx = 0;
}
/* we could get arbitrarily complicated here for speed purposes
however, the simple scheme here is to implement a receive fifo
and always set the maximum to new bytes to the space remaining
in the fifo. this number will be reincremented after calls
to usbReceiveBytes */
void vcomDataRxCb(void) {
/* do whatever after data has been received from host */
/* setEPRxCount on the previous cycle should garuntee
we havnt received more bytes than we can fit */
uint8 newBytes = GetEPRxCount(VCOM_RX_ENDP);
/* assert (newBytes <= maxNewBytes); */
/* todo, not checking very carefully for edge cases. USUALLY,
if we emit the reset pulse and send 4 bytes, then newBytes
should be 4. But its POSSIBLE that this would be violated
in some cases */
/* magic number, {0x31, 0x45, 0x41, 0x46} is "1EAF" */
char chkBuf[4];
char cmpBuf[4] = {0x31, 0x45, 0x41, 0x46};
if (reset_state == DTR_NEGEDGE) {
reset_state = DTR_LOW;
if (newBytes >= 4) {
unsigned int target = (unsigned int)usbWaitReset | 0x1;
PMAToUserBufferCopy(chkBuf,VCOM_RX_ADDR,4);
int i;
USB_Bool cmpMatch = TRUE;
for (i=0; i<4; i++) {
if (chkBuf[i] != cmpBuf[i]) {
cmpMatch = FALSE;
}
}
if (cmpMatch) {
asm volatile("mov r0, %[stack_top] \n\t" // Reset the stack
"mov sp, r0 \n\t"
"mov r0, #1 \n\t"
"mov r1, %[target_addr] \n\t"
"mov r2, %[cpsr] \n\t"
"push {r2} \n\t" // Fake xPSR
"push {r1} \n\t" // Target address for PC
"push {r0} \n\t" // Fake LR
"push {r0} \n\t" // Fake R12
"push {r0} \n\t" // Fake R3
"push {r0} \n\t" // Fake R2
"push {r0} \n\t" // Fake R1
"push {r0} \n\t" // Fake R0
"mov lr, %[exc_return] \n\t"
"bx lr"
:
: [stack_top] "r" (STACK_TOP),
[target_addr] "r" (target),
[exc_return] "r" (EXC_RETURN),
[cpsr] "r" (DEFAULT_CPSR)
: "r0", "r1", "r2");
/* should never get here */
}
}
}
if (recvBufIn + newBytes < VCOM_RX_EPSIZE) {
PMAToUserBufferCopy(&vcomBufferRx[recvBufIn],VCOM_RX_ADDR,newBytes);
recvBufIn += newBytes;
} else {
/* we have to copy the data in two chunks because we roll over
the edge of the circular buffer */
uint8 tailBytes = VCOM_RX_EPSIZE - recvBufIn;
uint8 remaining = newBytes - tailBytes;
PMAToUserBufferCopy(&vcomBufferRx[recvBufIn],VCOM_RX_ADDR,tailBytes);
PMAToUserBufferCopy(&vcomBufferRx[0], VCOM_RX_ADDR,remaining);
recvBufIn = (recvBufIn + newBytes ) % VCOM_RX_EPSIZE;
}
maxNewBytes -= newBytes;
SetEPRxCount(VCOM_RX_ENDP,maxNewBytes);
SetEPRxValid(VCOM_RX_ENDP);
}
void vcomManagementCb(void) {
/* unused. This enpoint would callback if we had sent a linestate
changed notification */
}
u8* vcomGetSetLineCoding(uint16 length) {
if (length == 0) {
pInformation->Ctrl_Info.Usb_wLength = sizeof(USB_Line_Coding);
}
return (uint8*)&line_coding;
}
vcomSetLineState(void) {
}
void usbInit(void) {
pInformation->Current_Configuration = 0;
usbPowerOn();
_SetISTR(0);
wInterrupt_Mask = ISR_MSK;
_SetCNTR(wInterrupt_Mask);
usbEnbISR();
bDeviceState = UNCONNECTED;
}
void usbReset(void) {
pInformation->Current_Configuration = 0;
/* current feature is current bmAttributes */
pInformation->Current_Feature = (USB_CONFIG_ATTR_BUSPOWERED | USB_CONFIG_ATTR_SELF_POWERED);
_SetBTABLE(USB_BTABLE_ADDRESS);
/* setup control endpoint 0 */
_SetEPType(ENDP0, EP_CONTROL);
_SetEPTxStatus(ENDP0, EP_TX_STALL);
_SetEPRxAddr(ENDP0,VCOM_CTRL_RX_ADDR);
_SetEPTxAddr(ENDP0,VCOM_CTRL_TX_ADDR);
Clear_Status_Out(ENDP0);
SetEPRxCount(ENDP0, pProperty->MaxPacketSize);
SetEPRxValid(ENDP0);
/* setup management endpoint 1 */
SetEPType (VCOM_NOTIFICATION_ENDP, EP_INTERRUPT);
SetEPTxAddr (VCOM_NOTIFICATION_ENDP, VCOM_NOTIFICATION_ADDR);
SetEPTxStatus (VCOM_NOTIFICATION_ENDP, EP_TX_NAK);
SetEPRxStatus (VCOM_NOTIFICATION_ENDP, EP_RX_DIS);
/* setup data endpoint OUT (rx) */
/* SetEPType (VCOM_RX_ENDP, EP_BULK); */
/* SetEPRxAddr (VCOM_RX_ENDP, VCOM_RX_ADDR); */
/* SetEPRxCount (VCOM_RX_ENDP, VCOM_RX_EPSIZE); */
/* // SetEPTxStatus (VCOM_RX_ENDP, EP_TX_DIS); */
/* SetEPRxStatus (VCOM_RX_ENDP, EP_RX_VALID); */
SetEPType (3, EP_BULK);
SetEPRxAddr (3, 0x110);
SetEPRxCount (3,64);
// SetEPTxStatus (VCOM_RX_ENDP, EP_TX_DIS);
SetEPRxStatus (3, EP_RX_VALID);
/* setup data endpoint IN (tx) */
SetEPType (VCOM_TX_ENDP, EP_BULK);
SetEPTxAddr (VCOM_TX_ENDP, VCOM_TX_ADDR);
SetEPTxStatus (VCOM_TX_ENDP, EP_TX_NAK);
SetEPRxStatus (VCOM_TX_ENDP, EP_RX_DIS);
bDeviceState = ATTACHED;
SetDeviceAddress(0);
/* reset the rx fifo */
recvBufIn = 0;
recvBufOut = 0;
maxNewBytes = VCOM_RX_EPSIZE;
countTx = 0;
}
void usbStatusIn(void) {
/* adjust the usart line coding
if we wish to couple the CDC line coding
with the real usart port */
}
void usbStatusOut(void) {
}
RESULT usbDataSetup(uint8 request) {
uint8 *(*CopyRoutine)(uint16);
CopyRoutine = NULL;
if (Type_Recipient == (CLASS_REQUEST | INTERFACE_RECIPIENT)) {
switch (request) {
case (GET_LINE_CODING):
CopyRoutine = vcomGetSetLineCoding;
last_request = GET_LINE_CODING;
break;
case (SET_LINE_CODING):
CopyRoutine = vcomGetSetLineCoding;
last_request = SET_LINE_CODING;
break;
default: break;
}
}
if (CopyRoutine == NULL) {
return USB_UNSUPPORT;
}
pInformation->Ctrl_Info.CopyData = CopyRoutine;
pInformation->Ctrl_Info.Usb_wOffset = 0;
(*CopyRoutine)(0);
return USB_SUCCESS;
}
RESULT usbNoDataSetup(u8 request) {
uint8 new_signal;
/* we support set com feature but dont handle it */
if (Type_Recipient == (CLASS_REQUEST | INTERFACE_RECIPIENT)) {
switch (request) {
case (SET_COMM_FEATURE):
return USB_SUCCESS;
case (SET_CONTROL_LINE_STATE):
/* to reset the board, pull both dtr and rts low
then pulse dtr by itself */
new_signal = pInformation->USBwValues.bw.bb0 & (CONTROL_LINE_DTR | CONTROL_LINE_RTS);
line_dtr_rts = new_signal & 0x03;
switch (reset_state) {
/* no default, covered enum */
case DTR_UNSET:
if ((new_signal & CONTROL_LINE_DTR) == 0 ) {
reset_state = DTR_LOW;
} else {
reset_state = DTR_HIGH;
}
break;
case DTR_HIGH:
if ((new_signal & CONTROL_LINE_DTR) == 0 ) {
reset_state = DTR_NEGEDGE;
} else {
reset_state = DTR_HIGH;
}
break;
case DTR_NEGEDGE:
if ((new_signal & CONTROL_LINE_DTR) == 0 ) {
reset_state = DTR_LOW;
} else {
reset_state = DTR_HIGH;
}
break;
case DTR_LOW:
if ((new_signal & CONTROL_LINE_DTR) == 0 ) {
reset_state = DTR_LOW;
} else {
reset_state = DTR_HIGH;
}
break;
}
return USB_SUCCESS;
}
}
return USB_UNSUPPORT;
}
RESULT usbGetInterfaceSetting(uint8 interface, uint8 alt_setting) {
if (alt_setting > 0) {
return USB_UNSUPPORT;
} else if (interface > 1) {
return USB_UNSUPPORT;
}
return USB_SUCCESS;
}
u8* usbGetDeviceDescriptor(u16 length) {
return Standard_GetDescriptorData(length, &Device_Descriptor);
}
u8* usbGetConfigDescriptor(u16 length) {
return Standard_GetDescriptorData(length, &Config_Descriptor);
}
u8* usbGetStringDescriptor(u16 length) {
uint8 wValue0 = pInformation->USBwValue0;
if (wValue0 > 2) {
return NULL;
}
return Standard_GetDescriptorData(length, &String_Descriptor[wValue0]);
}
/* internal callbacks to respond to standard requests */
void usbSetConfiguration(void) {
if (pInformation->Current_Configuration != 0) {
bDeviceState = CONFIGURED;
}
}
void usbSetDeviceAddress(void) {
bDeviceState = ADDRESSED;
}
|