aboutsummaryrefslogtreecommitdiffstats
path: root/docs/source/libmaple/overview.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/libmaple/overview.rst')
-rw-r--r--docs/source/libmaple/overview.rst516
1 files changed, 516 insertions, 0 deletions
diff --git a/docs/source/libmaple/overview.rst b/docs/source/libmaple/overview.rst
new file mode 100644
index 0000000..006f1d8
--- /dev/null
+++ b/docs/source/libmaple/overview.rst
@@ -0,0 +1,516 @@
+.. highlight:: c
+
+.. _libmaple-overview:
+
+Overview
+========
+
+This page is a general overview of :ref:`libmaple proper
+<libmaple-vs-wirish>`. It describes libmaple's design, and names
+implementation patterns to look for when using it. General
+familiarity with the :ref:`STM32 <stm32>` is assumed; beginners should
+start with the high-level :ref:`Wirish interface <language>` instead.
+Examples are given from libmaple's sources.
+
+.. contents:: Contents
+ :local:
+
+Design Goals
+------------
+
+The central goal for libmaple proper is to provide a pleasant,
+portable, and consistent set of interfaces for dealing with the
+various series of STM32 microcontrollers.
+
+Portability in particular can be a problem when programming for the
+STM32. While the various STM32 series are largely pin-compatible with
+one another, the peripheral register maps between series often change
+drastically, even when the functionality provided by the peripheral
+doesn't change very much. This means that code which accesses
+registers directly often needs to change when porting a program to a
+different series MCU.
+
+ST's solution to this problem thus far has been to `issue
+<http://www.st.com/internet/com/SOFTWARE_RESOURCES/SW_COMPONENT/FIRMWARE/stm32l1_stdperiph_lib.zip>`_
+`separate
+<http://www.st.com/internet/com/SOFTWARE_RESOURCES/SW_COMPONENT/FIRMWARE/stm32f10x_stdperiph_lib.zip>`_
+`firmware
+<http://www.st.com/internet/com/SOFTWARE_RESOURCES/SW_COMPONENT/FIRMWARE/stm32f2xx_stdperiph_lib.zip>`_
+`libraries
+<http://www.st.com/internet/com/SOFTWARE_RESOURCES/SW_COMPONENT/FIRMWARE/stm32f4_dsp_stdperiph_lib.zip>`_;
+one for each STM32 series. Along with these, they have released a
+`number
+<http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/APPLICATION_NOTE/DM00024853.pdf>`_
+of `application
+<http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/APPLICATION_NOTE/DM00033267.pdf>`_
+`notes
+<http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/APPLICATION_NOTE/DM00032987.pdf>`_
+describing the compatibility issues and how to migrate between series
+by switching firmware libraries. Often, the migration advice is
+essentially "rewrite your code"; this occurs, for example, with any
+code involving GPIO or DMA being migrated between STM32F1 and STM32F2.
+
+Needless to say, this can be very annoying. (Didn't we solve this
+sort of problem years ago?) When you just want your robot to fly,
+your `LEDs to blink <http://www.youtube.com/watch?v=J845L45zqfk>`_, or
+your `FM synthesizer <https://github.com/Ixox/preen>`_ to, well,
+`synthesize <http://xhosxe.free.fr/IxoxFMSynth.mp3>`_, you probably
+couldn't care less about dealing with a new set of registers.
+
+We want to make it easier to write portable STM32 code. To enable
+that, libmaple abstracts away many hardware details behind portable
+interfaces. We also want to make it easy for you to get your hands
+dirty when need or desire arises. To that end, libmaple makes as few
+assumptions as possible, and does its best to get out of your way when
+you want it to leave.
+
+.. _libmaple-overview-devices:
+
+Libmaple's Device Model
+-----------------------
+
+The libmaple device model is simple and stupid. This is a feature.
+
+*Device types* are the central libmaple abstraction; they exist to
+provide portable interfaces to common peripherals, but they still let
+you do nonportable things easily if you want to.
+
+The rules for device types are:
+
+- Device types are structs representing peripherals. The name of the
+ device type for peripheral "foo" is ``struct foo_dev`` (so for
+ foo=ADC, it's ``struct adc_dev``. For foo=DMA, it's ``struct
+ dma_dev``; etc.). These are always ``typedef``\ ed to ``foo_dev``.
+
+- Each device type contains any information needed or used by libmaple
+ for operating on the peripheral the type represents. Device types
+ are defined alongside declarations for portable support routines in
+ the header ``<libmaple/foo.h>`` (examples: :ref:`libmaple-adc`,
+ :ref:`libmaple-dma`).
+
+- Direct :ref:`register access <libmaple-overview-regmaps>` is
+ possible via the ``regs`` field in each device type. (Given a
+ ``foo_dev *foo``, you can read and write the BAR register
+ ``FOO_BAR`` with ``foo->regs->BAR``.)
+
+- An :ref:`rcc_clk_id <libmaple-rcc-rcc_clk_id>` for the device is
+ available in the ``clk_id`` field; this is an opaque type that can
+ be used to uniquely identifies the peripheral. (Given ``foo_dev
+ *foo``, you can check which foo you have by looking at
+ ``foo->clk_id``.)
+
+- The backend for each supported STM32 series statically initializes
+ devices as appropriate, and ensures that the peripheral support
+ header includes declarations for pointers to these statically
+ allocated devices.
+
+- Peripheral support functions usually expect a pointer to a device as
+ their first argument. These functions' implementations may vary
+ with the particular microcontroller you're targeting, but their
+ semantics try to stay the same. To migrate to a different target,
+ you'll often be able to simply recompile your program (and libmaple)
+ for the new target.
+
+- When complete portability is not possible, libmaple tries to keep
+ the nonportable bits in data, rather than code.
+
+Example: ``adc_dev``
+~~~~~~~~~~~~~~~~~~~~
+
+These rules are best explained by example. The device type for ADC
+peripherals is ``struct adc_dev``. Its definition is provided by
+``<libmaple/adc.h>``::
+
+ typedef struct adc_dev {
+ adc_reg_map *regs;
+ rcc_clk_id clk_id;
+ } adc_dev;
+
+An ``adc_dev`` contains a pointer to its register map in the ``regs``
+field. This ``regs`` field is available on all device types. Its value
+is a :ref:`register map base pointer
+<libmaple-overview-regmaps-base-pts>` (like ``ADC1_BASE``, etc.) for
+the peripheral, as determined by the current target. For example, two
+equivalent expressions for reading the ADC1 regular data register are
+``ADC1_BASE->DR`` and ``ADC1->regs->DR`` (though the first one is
+faster). Manipulating registers directly via ``->regs`` is thus
+always possible, but can be nonportable, and should you choose to do
+this, it's up to you to get it right.
+
+An ``adc_dev`` also contains an ``rcc_clk_id`` for the ADC peripheral
+it represents in the ``clk_id`` field. The ``rcc_clk_id`` enum type
+has an enumerator for each peripheral supported by your series. For
+example, the ADC peripherals' ``rcc_clk_id`` enumerators are
+``RCC_ADC1``, ``RCC_ADC2``, and ``RCC_ADC3``. In general, an
+``rcc_clk_id`` is useful not only for managing the clock line to a
+peripheral, but also as a unique identifier for that peripheral.
+
+(Device types can be more complicated than this; ``adc_dev`` was
+chosen as a simple example of the minimum you can expect.)
+
+Rather than have you define your own ``adc_dev``\ s, libmaple defines
+them for you as appropriate for your target STM32 series. For example,
+on STM32F1, the file libmaple/stm32f1/adc.c contains the following::
+
+ static adc_dev adc1 = {
+ .regs = ADC1_BASE,
+ .clk_id = RCC_ADC1,
+ };
+ /** ADC1 device. */
+ const adc_dev *ADC1 = &adc1;
+
+ static adc_dev adc2 = {
+ .regs = ADC2_BASE,
+ .clk_id = RCC_ADC2,
+ };
+ /** ADC2 device. */
+ const adc_dev *ADC2 = &adc2;
+
+ #if defined(STM32_HIGH_DENSITY) || defined(STM32_XL_DENSITY)
+ static adc_dev adc3 = {
+ .regs = ADC3_BASE,
+ .clk_id = RCC_ADC3,
+ };
+ /** ADC3 device. */
+ const adc_dev *ADC3 = &adc3;
+ #endif
+
+Since all supported STM32F1 targets support ADC1 and ADC2, libmaple
+predefines corresponding ``adc_dev`` instances for you. To save space,
+it avoids defining an ``adc_dev`` for ADC3 unless you are targeting a
+high- or XL-density STM32F1, as medium- and lower density MCUs don't
+have ADC3.
+
+Note that the structs themselves are static and are exposed only via
+pointers. These pointers are declared in a series-specific ADC
+header, ``<series/adc.h>`` which is included by ``<libmaple/adc.h>``
+based on the MCU you're targeting. (**Never include <series/foo.h>
+directly**. Instead, include ``<libmaple/foo.h>`` and let it take
+care of that for you.) On STM32F1, the series ADC header contains the
+following::
+
+ extern const struct adc_dev *ADC1;
+ extern const struct adc_dev *ADC2;
+ #if defined(STM32_HIGH_DENSITY) || defined(STM32_XL_DENSITY)
+ extern const struct adc_dev *ADC3;
+ #endif
+
+In general, you access the predefined devices via these pointers. As
+illustrated by the ADC example, the variables for these pointers
+follow the naming scheme used in ST's reference manuals -- the pointer
+to ADC1's ``adc_dev`` is named ``ADC1``, and so on.
+
+The :ref:`API documentation <libmaple-apis>` for the peripherals
+you're interested in will list the available devices on each target.
+
+Using Devices
+~~~~~~~~~~~~~
+
+Peripheral support routines usually expect pointers to their device
+types as their first arguments. Here are some ADC examples::
+
+ uint16 adc_read(const adc_dev *dev, uint8 channel);
+ static inline void adc_enable(const adc_dev *dev);
+ static inline void adc_disable(const adc_dev *dev);
+
+So, to read channel 2 of ADC1, you could call ``adc_read(ADC1, 2)``.
+To disable ADC2, call ``adc_disable(ADC2)``; etc.
+
+That's it; there's nothing complicated here. In general, just follow
+links from the :ref:`libmaple-apis` page to the header for the
+peripheral you're interested in. It will explain the supported
+functionality, both portable and series-specific.
+
+Segregating Non-portable Functionality into Data
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+As mentioned previously, when total portability isn't possible,
+libmaple tries to do the right thing and segregate the nonportable
+portions into data rather than code. The function
+``adc_set_sample_rate()`` is a good example of how this works, and why
+it's useful::
+
+ void adc_set_sample_rate(const adc_dev *dev, adc_smp_rate smp_rate);
+
+For example, while both STM32F1 and STM32F2 support setting the ADC
+sample time via the same register interface, the actual sample times
+supported are different. For instance, on STM32F1, available sample
+times include 1.5, 7.5, and 13.5 ADC cycles. On STM32F2, none of these
+are available, but 3, 15, and 28 ADC cycles are supported (which is
+not true for STM32F1). To work with this, libmaple provides a single
+function, ``adc_set_sample_rate()``, for setting an ADC controller's
+channel sampling time, but the actual sample rates it takes are given
+by the ``adc_smp_rate`` type, which is different on STM32F1 and
+STM32F2.
+
+This is the STM32F1 implementation of adc_smp_rate::
+
+ typedef enum adc_smp_rate {
+ ADC_SMPR_1_5, /**< 1.5 ADC cycles */
+ ADC_SMPR_7_5, /**< 7.5 ADC cycles */
+ ADC_SMPR_13_5, /**< 13.5 ADC cycles */
+ ADC_SMPR_28_5, /**< 28.5 ADC cycles */
+ ADC_SMPR_41_5, /**< 41.5 ADC cycles */
+ ADC_SMPR_55_5, /**< 55.5 ADC cycles */
+ ADC_SMPR_71_5, /**< 71.5 ADC cycles */
+ ADC_SMPR_239_5, /**< 239.5 ADC cycles */
+ } adc_smp_rate;
+
+And here is the STM32F2 implementation::
+
+ typedef enum adc_smp_rate {
+ ADC_SMPR_3, /**< 3 ADC cycles */
+ ADC_SMPR_15, /**< 15 ADC cycles */
+ ADC_SMPR_28, /**< 28 ADC cycles */
+ ADC_SMPR_56, /**< 56 ADC cycles */
+ ADC_SMPR_84, /**< 84 ADC cycles */
+ ADC_SMPR_112, /**< 112 ADC cycles */
+ ADC_SMPR_144, /**< 144 ADC cycles */
+ ADC_SMPR_480, /**< 480 ADC cycles */
+ } adc_smp_rate;
+
+So, on F1, you could call ``adc_set_sample_rate(ADC1, ADC_SMPR_1_5)``,
+and on F2, you could call ``adc_set_sample_rate(ADC1,
+ADC_SMPR_3)``. If you're only interested in one of those series, then
+that's all you need to know.
+
+However, if you're targeting multiple series, then this is useful
+because it lets you put the actual sample time for the MCU you're
+targeting into a variable (or macro, etc.), whose value depends on the
+target you're compiling for. This lets you have a single codebase to
+test and maintain, and lets you add support for a new target by simply
+adding some new data.
+
+To continue the example, one easy way is to pick an ``adc_smp_rate``
+for each of STM32F1 and STM32F2 is with conditional compilation. Using
+the :ref:`STM32_MCU_SERIES <libmaple-stm32-STM32_MCU_SERIES>` define
+from :ref:`libmaple-stm32`, you can write::
+
+ #include <libmaple/adc.h>
+ #include <libmaple/stm32.h>
+
+ #if STM32_MCU_SERIES == STM32_SERIES_F1
+ /* Target is an STM32F1 */
+ adc_smp_rate smp_rate = ADC_SMPR_1_5;
+ #elif STM32_MCU_SERIES == STM32_SERIES_F2
+ /* Target is an STM32F2 */
+ adc_smp_rate smp_rate = ADC_SMPR_3;
+ #else
+ #error "Unsupported STM32 target; can't pick a sample rate"
+ #endif
+
+ void setup(void) {
+ adc_set_smp_rate(ADC1, smp_rate);
+ }
+
+Adding support for e.g. STM32F4 would only require adding a new
+``#elif`` for that series. This is simple, but hackish, and can get
+out of control if you're not careful.
+
+Another way to get the job done is to declare an ``extern adc_smp_rate
+smp_rate``, and use the build system to compile a file defining
+``smp_rate`` depending on your target. As was discussed earlier, this
+is what libmaple does when choosing which files to use for defining
+the appropriate ``adc_dev``\ s for your target. How to do this is
+outside the scope of this overview, however.
+
+.. _libmaple-overview-regmaps:
+
+Register Maps
+-------------
+
+Though we aim to enable libmaple's users to interact with the more
+portable :ref:`device interface <libmaple-overview-devices>` as much
+as possible, there will always be a need for efficient direct register
+access. To allow for that, libmaple provides *register maps* as a
+consistent set of names and abstractions for dealing with peripheral
+registers and their bits.
+
+A *register map type* is a struct which names and provides access to a
+peripheral's registers (we can use a struct because registers are
+usually mapped into contiguous regions of memory). Here's an example
+register map for the DAC peripheral on STM32F1 series MCUs (``__io``
+is just libmaple's way of saying ``volatile`` when referring to
+register values)::
+
+ typedef struct dac_reg_map {
+ __io uint32 CR; /**< Control register */
+ __io uint32 SWTRIGR; /**< Software trigger register */
+ __io uint32 DHR12R1; /**< Channel 1 12-bit right-aligned data
+ holding register */
+ __io uint32 DHR12L1; /**< Channel 1 12-bit left-aligned data
+ holding register */
+ __io uint32 DHR8R1; /**< Channel 1 8-bit left-aligned data
+ holding register */
+ __io uint32 DHR12R2; /**< Channel 2 12-bit right-aligned data
+ holding register */
+ __io uint32 DHR12L2; /**< Channel 2 12-bit left-aligned data
+ holding register */
+ __io uint32 DHR8R2; /**< Channel 2 8-bit left-aligned data
+ holding register */
+ __io uint32 DHR12RD; /**< Dual DAC 12-bit right-aligned data
+ holding register */
+ __io uint32 DHR12LD; /**< Dual DAC 12-bit left-aligned data
+ holding register */
+ __io uint32 DHR8RD; /**< Dual DAC 8-bit right-aligned data holding
+ register */
+ __io uint32 DOR1; /**< Channel 1 data output register */
+ __io uint32 DOR2; /**< Channel 2 data output register */
+ } dac_reg_map;
+
+There are two things to notice here. First, if the chip reference
+manual (for STM32F1, that's RM0008) names a register ``DAC_FOO``, then
+``dac_reg_map`` has a field named ``FOO``. So, the Channel 1 12-bit
+right-aligned data register (DAC_DHR12R1) is the ``DHR12R1`` field in
+a ``dac_reg_map``. Second, if the reference manual describes a
+register as "Foo bar register", the documentation for the
+corresponding field has the same description. This consistency makes
+it easy to search for a particular register, and, if you see one used
+in a source file, to feel sure about what's going on just based on its
+name.
+
+.. _libmaple-overview-regmaps-base-pts:
+
+So let's say you've included ``<libmaple/foo.h>``, and you want to
+mess with some particular register. You'll do this using *register map
+base pointers*, which are pointers to ``struct foo_reg_map``. What's
+the name of the base pointer you want? That depends on if there's
+more than one foo or not. If there's only one foo, then libmaple
+guarantees there will be a ``#define`` that looks like like this::
+
+ #define FOO_BASE ((struct foo_reg_map*)0xDEADBEEF)
+
+That is, you're guaranteed there will be a pointer to the (only)
+``foo_reg_map`` you want, and it will be called
+``FOO_BASE``. (``0xDEADBEEF`` is the register map's *base address*, or
+the fixed location in memory where the register map begins). Here's
+an example for STM32F1::
+
+ #define DAC_BASE ((struct dac_reg_map*)0x40007400)
+
+Here are some examples for how to read and write to registers using
+register map base pointers.
+
+* In order to write 2048 to the channel 1 12-bit left-aligned data
+ holding register (DAC_DHR12L1), you would write::
+
+ DAC_BASE->DHR12L1 = 2048;
+
+* In order to read the DAC control register, you would write::
+
+ uint32 cr = DAC_BASE->CR;
+
+That covers the case where there's a single foo peripheral. If
+there's more than one (say, if there are *n*), then
+``<libmaple/foo.h>`` provides the following::
+
+ #define FOO1_BASE ((struct foo_reg_map*)0xDEADBEEF)
+ #define FOO2_BASE ((struct foo_reg_map*)0xF00DF00D)
+ ...
+ #define FOOn_BASE ((struct foo_reg_map*)0x1EAF1AB5)
+
+Here are some examples for the ADCs on STM32F1::
+
+ #define ADC1_BASE ((struct adc_reg_map*)0x40012400)
+ #define ADC2_BASE ((struct adc_reg_map*)0x40012800)
+
+In order to read from the ADC1's regular data register (where the
+results of ADC conversion are stored), you would write::
+
+ uint32 converted_result = ADC1_BASE->DR;
+
+Register Bit Definitions
+------------------------
+
+In ``<libmaple/foo.h>``, there will also be a variety of ``#define``\
+s for dealing with interesting bits in the xxx registers, called
+*register bit definitions*. In keeping with the ST reference manuals,
+these are named according to the scheme ``FOO_REG_FIELD``, where
+"``REG``" refers to the register, and "``FIELD``" refers to the bit or
+bits in ``REG`` that are special.
+
+Again, this is probably best explained by example. On STM32F1, each
+Direct Memory Access (DMA) controller's register map has a certain
+number of channel configuration registers (DMA_CCRx). In each of
+these channel configuration registers, bit 14 is called the
+``MEM2MEM`` bit, and bits 13 and 12 are the priority level (``PL``)
+bits. Here are the register bit definitions for those fields on
+STM32F1::
+
+ #define DMA_CCR_MEM2MEM_BIT 14
+ #define DMA_CCR_MEM2MEM (1U << DMA_CCR_MEM2MEM_BIT)
+ #define DMA_CCR_PL (0x3 << 12)
+ #define DMA_CCR_PL_LOW (0x0 << 12)
+ #define DMA_CCR_PL_MEDIUM (0x1 << 12)
+ #define DMA_CCR_PL_HIGH (0x2 << 12)
+ #define DMA_CCR_PL_VERY_HIGH (0x3 << 12)
+
+Thus, to check if the ``MEM2MEM`` bit is set in DMA controller 1's
+channel configuration register 2 (DMA_CCR2), you can write::
+
+ if (DMA1_BASE->CCR2 & DMA_CCR_MEM2MEM) {
+ /* MEM2MEM is set */
+ }
+
+Certain register values occupy multiple bits. For example, the
+priority level (PL) of a DMA channel is determined by bits 13 and 12
+of the corresponding channel configuration register. As shown above,
+libmaple provides several register bit definitions for masking out the
+individual PL bits and determining their meaning. For example, to set
+the priority level of a DMA transfer to "high priority", you can
+do a read-modify-write sequence on the DMA_CCR_PL bits like so::
+
+ uint32 ccr = DMA1_BASE->CCR2;
+ ccr &= ~DMA_CCR_PL;
+ ccr |= DMA_CCR_PL_HIGH;
+ DMA1_BASE->CCR2 = ccr;
+
+Of course, before doing that, you should check to make sure there's
+not already a device-level function for performing the same task! (In
+this case, there is. It's called :c:func:`dma_set_priority()`; see
+:ref:`libmaple-dma`.) For instance, **none of the above code is
+portable** to STM32F4, which uses DMA streams instead of channels for
+this purpose.
+
+Peripheral Support Routines
+---------------------------
+
+This section describes patterns to look for in peripheral support
+routines.
+
+In general, each device needs to be initialized before it can be used.
+libmaple provides this initialization routine for each peripheral
+``foo``; its name is ``foo_init()``. These initialization routines
+turn on the clock to a device, and restore its register values to
+their default settings. Here are a few examples::
+
+ /* From <libmaple/dma.h> */
+ void dma_init(dma_dev *dev);
+
+ /* From <libmaple/gpio.h> */
+ void gpio_init(gpio_dev *dev);
+ void gpio_init_all(void);
+
+Note that, sometimes, there will be an additional initialization
+routine for all available peripherals of a certain kind.
+
+Many peripherals also need additional configuration before they can be
+used. These functions are usually called something along the lines of
+``foo_enable()``, and often take additional arguments which specify a
+particular configuration for the peripheral. Some examples::
+
+ /* From <libmaple/usart.h> */
+ void usart_enable(usart_dev *dev);
+
+ /* From <libmaple/i2c.h> */
+ void i2c_master_enable(i2c_dev *dev, uint32 flags);
+
+After you've initialized, and potentially enabled, your peripheral, it
+is now time to begin using it. The :ref:`libmaple API pages
+<libmaple-apis>` are your friends here.
+
+.. rubric:: Footnotes
+
+.. [#fgpio] As an exception, GPIO ports are given letters instead of
+ numbers (``GPIOA`` and ``GPIOB`` instead of ``GPIO1`` and
+ ``GPIO2``, etc.).