aboutsummaryrefslogtreecommitdiffstats
path: root/docs/source/libmaple/api/rcc.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/libmaple/api/rcc.rst')
-rw-r--r--docs/source/libmaple/api/rcc.rst360
1 files changed, 360 insertions, 0 deletions
diff --git a/docs/source/libmaple/api/rcc.rst b/docs/source/libmaple/api/rcc.rst
new file mode 100644
index 0000000..ce58ec8
--- /dev/null
+++ b/docs/source/libmaple/api/rcc.rst
@@ -0,0 +1,360 @@
+.. highlight:: c
+.. _libmaple-rcc:
+
+``<libmaple/rcc.h>``
+====================
+
+Reset and Clock Control (RCC) support.
+
+The RCC is responsible for managing the MCU's various clocks. This
+includes the core clock SYSCLK, which determines the CPU clock
+frequency, as well as the clock lines that drive peripherals.
+
+Because of this, the available RCC functionality varies by target.
+There are a :ref:`variety of abstractions <libmaple-rcc-core-types>`
+in place to make managing this more convenient.
+
+.. contents:: Contents
+ :local:
+ :depth: 2
+
+.. _libmaple-rcc-core-types:
+
+Core Types
+----------
+
+The core abstractions in place are
+:ref:`rcc_clk_id <libmaple-rcc-rcc_clk_id>`,
+:ref:`rcc_clk <libmaple-rcc-rcc_clk>`,
+:ref:`rcc_sysclk_src <libmaple-rcc-rcc_sysclk_src>`,
+:ref:`rcc_clk_domain <libmaple-rcc-rcc_clk_domain>`, and
+:ref:`rcc_prescaler <libmaple-rcc-rcc_prescaler>`.
+
+.. _libmaple-rcc-rcc_clk_id:
+
+Peripheral Identifiers: ``rcc_clk_id``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+``rcc_clk_id`` is an enum used to identify peripherals. The RCC
+back-ends use them to look up a peripheral's bus and clock line, but
+they are also generally useful as unique identifiers for each
+peripheral. You can manage peripherals using their ``rcc_clk_id``\ s
+with :ref:`these functions <libmaple-rcc-clk-id-funcs>`.
+
+Peripherals which are common across targets have the same token
+(though not necessarily the same value) for their ``rcc_clk_id``
+across different targets. For example, the ``rcc_clk_id`` for the ADC1
+peripheral is always ``RCC_ADC1`` regardless of the target.
+Additionally, as explained in :ref:`libmaple-overview-devices`, each
+peripheral device type struct contains the ``rcc_clk_id`` for that
+peripheral in a ``clk_id`` field.
+
+The available ``rcc_clk_id``\ s on each supported target series are as
+follows.
+
+STM32F1 Targets
++++++++++++++++
+
+.. doxygenenum:: stm32f1::rcc_clk_id
+
+STM32F2 Targets
++++++++++++++++
+
+.. doxygenenum:: stm32f2::rcc_clk_id
+
+.. _libmaple-rcc-rcc_sysclk_src:
+
+System Clock (SYSCLK) Sources: ``rcc_sysclk_src``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+SYSCLK is the core system clock. It determines the CPU clock rate, and
+it's the base clock which is used to drive (most of) the peripherals
+on the STM32. ``rcc_sysclk_src`` is an enum for the possible SYSCLK
+sources. Switch the SYSCLK source with :ref:`rcc_switch_sysclk()
+<libmaple-rcc-rcc_switch_sysclk>`.
+
+.. doxygenenum:: rcc_sysclk_src
+
+As a special case, you can configure the PLL with a call to
+:ref:`rcc_configure_pll() <libmaple-rcc-rcc_configure_pll>`.
+
+.. _libmaple-rcc-rcc_clk:
+
+System and Secondary Clock Sources: ``rcc_clk``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ``rcc_clk`` type gives available system and secondary clock
+sources (e.g. HSI, HSE, LSE). As with :ref:`rcc_clk_id
+<libmaple-rcc-rcc_clk_id>`, clock sources which are common across
+targets have the same token, but not necessarily the same value, for
+their ``rcc_clk`` on each target. A variety of :ref:`clock management
+functions <libmaple-rcc-clk-funcs>` are available.
+
+Note that the inclusion of secondary clock sources, like LSI and LSE,
+makes ``rcc_clk`` different from the SYSCLK sources, which are managed
+using :ref:`rcc_sysclk_src <libmaple-rcc-rcc_sysclk_src>`.
+
+The available ``rcc_clk``\ s for each supported target series are as
+follows.
+
+STM32F1 Targets
++++++++++++++++
+
+.. doxygenenum:: stm32f1::rcc_clk
+
+STM32F2 Targets
++++++++++++++++
+
+.. doxygenenum:: stm32f2::rcc_clk
+
+.. _libmaple-rcc-rcc_clk_domain:
+
+Clock Domains: ``rcc_clk_domain``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+These specify the available clock domains. For example, each AHB and
+APB is a clock domain.
+
+This type mostly exists to enable asking devices what bus they're on,
+which, given knowledge of your system's clock configuration, can be
+useful when making decisions about prescalers, etc.
+
+Given an :ref:`rcc_clk_id <libmaple-rcc-rcc_clk_id>`, you can get the
+peripheral's clock domain with :ref:`rcc_dev_clk()
+<libmaple-rcc-rcc_dev_clk>`. Clock domains that are common across
+series have the same token (but not necessarily the same value) for
+their corresponding ``rcc_clk_domain``.
+
+The available ``rcc_clk_domain``\ s for each supported target series
+are as follows.
+
+STM32F1 Targets
++++++++++++++++
+
+.. doxygenenum:: stm32f1::rcc_clk_domain
+
+STM32F2 Targets
++++++++++++++++
+
+.. doxygenenum:: stm32f2::rcc_clk_domain
+
+.. _libmaple-rcc-rcc_prescaler:
+
+Prescalers: ``rcc_prescaler`` and Friends
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Available prescalers are managed via the ``rcc_prescaler`` type, the
+``rcc_set_prescaler()`` function, and a variety of related prescaler
+divider types. See :ref:`libmaple-rcc-prescalers` for more
+information and usage notes.
+
+Functions
+---------
+
+.. _libmaple-rcc-sysclk-funcs:
+.. _libmaple-rcc-rcc_switch_sysclk:
+
+SYSCLK Management
+~~~~~~~~~~~~~~~~~
+
+Change the SYSCLK source with ``rcc_switch_sysclk()``.
+
+.. doxygenfunction:: rcc_switch_sysclk
+
+.. _libmaple-rcc-rcc_configure_pll:
+
+PLL Configuration
+~~~~~~~~~~~~~~~~~
+
+You can configure the PLL with ``rcc_configure_pll()``. This takes an
+``rcc_pll_cfg`` struct as its argument. Though the definition of
+``rcc_pll_cfg`` is common across series, its contents are entirely
+target-dependent.
+
+.. doxygenstruct:: rcc_pll_cfg
+.. _rcc-rcc_configure_pll:
+.. doxygenfunction:: rcc_configure_pll
+
+The fields in an ``rcc_pll_cfg`` on each target are as follows.
+
+rcc_pll_cfg on STM32F1 Targets
+++++++++++++++++++++++++++++++
+
+The ``pllsrc`` field is chosen from the following.
+
+.. doxygenenum:: stm32f1::rcc_pllsrc
+
+.. FIXME [0.0.13] We've got plans to redo this; make sure you watch
+.. libmaple for changes here.
+
+The ``data`` field must point to a ``struct stm32f1_rcc_pll_data``.
+This just contains an ``rcc_pll_multiplier``.
+
+.. doxygenenum:: stm32f1::rcc_pll_multiplier
+
+.. doxygenstruct:: stm32f1::stm32f1_rcc_pll_data
+
+rcc_pll_cfg on STM32F2 Targets
+++++++++++++++++++++++++++++++
+
+The ``pllsrc`` field is chosen from the following.
+
+.. doxygenenum:: stm32f2::rcc_pllsrc
+
+The ``data`` field must point to a ``struct stm32f2_rcc_pll_data``.
+
+.. doxygenstruct:: stm32f2::stm32f2_rcc_pll_data
+
+.. _libmaple-rcc-clk-funcs:
+
+System and Secondary Clock Management
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+These functions are useful for managing clocks via their :ref:`rcc_clk
+<libmaple-rcc-rcc_clk>`.
+
+.. doxygenfunction:: rcc_turn_on_clk
+.. doxygenfunction:: rcc_turn_off_clk
+.. doxygenfunction:: rcc_is_clk_on
+.. doxygenfunction:: rcc_is_clk_ready
+
+.. _libmaple-rcc-clk-id-funcs:
+
+Peripheral Management
+~~~~~~~~~~~~~~~~~~~~~
+
+These functions are useful for managing peripherals via their
+:ref:`rcc_clk_id <libmaple-rcc-rcc_clk_id>`.
+
+.. _libmaple-rcc-rcc_clk_enable:
+.. doxygenfunction:: rcc_clk_enable
+.. doxygenfunction:: rcc_reset_dev
+.. _libmaple-rcc-rcc_dev_clk:
+.. doxygenfunction:: rcc_dev_clk
+
+.. _libmaple-rcc-prescalers:
+
+Prescaler Management
+~~~~~~~~~~~~~~~~~~~~
+
+All clock prescalers managed by RCC can be controlled with a single
+function, ``rcc_set_prescaler()``.
+
+.. doxygenfunction:: rcc_set_prescaler
+
+The arguments to ``rcc_set_prescaler()`` are target-dependent, but
+follow a common pattern:
+
+- The first argument is the prescaler to set, so there's one for each
+ peripheral clock domain, etc. These have names like
+ ``RCC_PRESCALER_FOO``, e.g. ``RCC_PRESCALER_APB1``. Choose the
+ prescaler from the ``rcc_prescaler``\ s on your target (see below).
+
+- The second argument is the actual clock divider to use; it's chosen
+ based on the first argument. The dividers for ``RCC_PRESCALER_FOO``
+ are given by the type ``rcc_foo_divider``, and have values like
+ ``RCC_FOO_xxx_DIV_y``. This means that the foo clock will be the
+ ``xxx`` clock divided by ``y``.
+
+For example, calling ``rcc_set_prescaler(RCC_PRESCALER_APB1,
+RCC_APB1_HCLK_DIV_1)`` would set the APB1 clock to HCLK divided by 1.
+
+Prescalers which are common across targets have the same token, though
+not necessarily the same value, for their ``rcc_prescaler`` (for
+example, ``RCC_PRESCALER_APB1`` is available on both STM32F1 and
+STM32F2 targets). The available prescalers and dividers on each
+supported target series are as follows.
+
+STM32F1 Targets
++++++++++++++++
+
+.. doxygenenum:: stm32f1::rcc_prescaler
+.. doxygenenum:: stm32f1::rcc_adc_divider
+.. doxygenenum:: stm32f1::rcc_apb1_divider
+.. doxygenenum:: stm32f1::rcc_apb2_divider
+.. doxygenenum:: stm32f1::rcc_ahb_divider
+
+STM32F2 Targets
++++++++++++++++
+
+.. doxygenenum:: stm32f2::rcc_prescaler
+.. doxygenenum:: stm32f2::rcc_mco2_divider
+.. doxygenenum:: stm32f2::rcc_mco1_divider
+.. doxygenenum:: stm32f2::rcc_rtc_divider
+.. doxygenenum:: stm32f2::rcc_apb2_divider
+.. doxygenenum:: stm32f2::rcc_apb1_divider
+.. doxygenenum:: stm32f2::rcc_ahb_divider
+
+Register Maps
+-------------
+
+These vary by target. The base pointer is always ``RCC_BASE``.
+
+.. doxygendefine:: RCC_BASE
+
+STM32F1 Targets
+~~~~~~~~~~~~~~~
+
+.. doxygenstruct:: stm32f1::rcc_reg_map
+
+STM32F2 Targets
+~~~~~~~~~~~~~~~
+
+.. doxygenstruct:: stm32f2::rcc_reg_map
+
+Register Bit Definitions
+------------------------
+
+These are given as source code. Available register bit definitions
+vary by target.
+
+.. We need this include to avoid crashing Emacs's ReST parser. Yuck.
+
+.. include:: rcc-reg-bits.txt
+
+Deprecated Functionality
+------------------------
+
+.. _rcc-rcc_clk_init:
+.. doxygenfunction:: stm32f1::rcc_clk_init
+
+To replace a call to ``rcc_clk_init()`` in order to set SYSCLK to PLL
+driven by an external oscillator, you can use something like this,
+which is portable except for the initialization of ``your_pll_cfg``::
+
+ /* You need to make this point to something valid for your target; see
+ * the documentation for rcc_configure_pll() for more details. */
+ extern rcc_pll_cfg *your_pll_cfg;
+
+ void pll_reconfigure() {
+ /* Turn on HSI using rcc_turn_on_clk() and wait for it to
+ * become ready by busy-waiting on rcc_is_clk_ready().
+ *
+ * Switch to HSI to ensure we're not using the PLL while we
+ * reconfigure it. */
+ rcc_turn_on_clk(RCC_CLK_HSI);
+ while (!rcc_is_clk_ready(RCC_CLK_HSI))
+ ;
+ rcc_switch_sysclk(RCC_CLKSRC_HSI);
+
+ /* Turn off HSE and the PLL, or we can't reconfigure it. */
+ rcc_turn_off_clk(RCC_CLK_PLL);
+ rcc_turn_off_clk(RCC_CLK_HSE);
+
+ /* Reconfigure the PLL. You can also perform any other
+ * prescaler management here. */
+ rcc_configure_pll(your_pll_cfg);
+
+ /* Turn on RCC_CLK_HSE. */
+ rcc_turn_on_clk(RCC_CLK_HSE);
+ while (!rcc_is_clk_ready(RCC_CLK_HSE))
+ ;
+
+ /* Turn on RCC_CLK_PLL. */
+ rcc_turn_on_clk(RCC_CLK_PLL);
+ while (!rcc_is_clk_ready(RCC_CLK_PLL))
+ ;
+
+ /* Finally, switch to the PLL. */
+ rcc_switch_sysclk(RCC_CLKSRC_PLL);
+ }