summaryrefslogtreecommitdiffstats
path: root/math/sets.page
blob: e8c9e2e8a0801ed480c77dd8729a899e620650ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
format: markdown
categories: math
toc: no
...

# Sets

*References: Most of the definitions and notation in the section are based on
[^rudin] or [^meserve]*

## Basics

If every element $a \in A$ is also $a \in B$, then we call
A a *subset* of B and write $A \subset B$. If there are elements of B
which are not elements of A, then we call A a *proper subset* of B. 

If $A \supset B$ and $B \supset A$ we write $A = B$;
otherwise $A \neq B$.

The null or empty set, which has no elements, is a subset of all others.

A relation on a space of sets S is something that can be definted as either 
true or false (holding or not holding) for any binary pair in S.

# Binary Operators

Binary operators defined on a set apply to any two elements of that set; order
may or may not be important. A set is *closed* with regards to a binary
operator if it contains the result of the binary operator. A set is *uniquely
defined* with regards to a binary operator if the result of the operator on two
elements of the set is unique from the results from all other pairs of
elements.

Some equivalence relations are 
$\identity$ (NOTE: = with three lines) (*identity*);
$\congruence$ (NOTE: = with tilde on top) (*congruence*; eg of 
geometric figures); and 
$~$ (NOTE: tilde) (*similarity*; eg of geometric figures).

Some properties of equivalence relations are

reflexive 
:    if $a=a$ is true for all a

symmetric
:    if $a=b$ implies $b=a$

transitive
:    if $a=b$ and $b=c$ implies $a=c$

[^rudin]: **Principles of Mathematical Analysis (3rd ed)**, by Walter Rudin. McGraw-Hill, 1976

[^meserve]: **Fundamental Concepts of Algebra**, by Bruce Meserve.