summaryrefslogtreecommitdiffstats log msg author committer range
path: root/math/tensors.page
diff options
 context: 12345678910152025303540 space: includeignore mode: unifiedssdiffstat only
Diffstat (limited to 'math/tensors.page')
-rw-r--r--math/tensors.page44
1 files changed, 21 insertions, 23 deletions
 diff --git a/math/tensors.page b/math/tensors.pageindex e1d24fc..7ea1848 100644--- a/math/tensors.page+++ b/math/tensors.page@@ -1,5 +1,3 @@-- Tensors, Differential Geometry, Manifolds ============================================ @@ -9,66 +7,66 @@ Most of this content is based on a 2002 Caltech course taught by Kip Thorn (PH23 On a manifold, only "short" vectors exist. Longer vectors are in a space tangent to the manifold. There are points ($P$), separation vectors ($\Delta \vector P$),-curves (:m:$Q(\zeta)$), tangent vectors (:m:$\delta P / \delta \zeta \equiv+curves ($Q(\zeta)$), tangent vectors ($\delta P / \delta \zeta \equiv \lim_{\Delta \zeta \rightarrow 0} \frac{ \vector{ Q(\zeta+\delta \zeta) --Q(\zeta) } }{\delta \zeta}$)+Q(\zeta) } }{\delta \zeta}$) -Coordinates: :m:$\Chi^\alpha (P)$, where :m:$\alpha = 0,1,2,3$;-:m:$Q(\Chi_0, \Chi_1, ...)$+Coordinates: $\Chi^\alpha (P)$, where $\alpha = 0,1,2,3$;+$Q(\Chi_0, \Chi_1, ...)$ there is an isomorphism between points and coordinates -Coordinate basis: :m:$\vector{e_\alpha} \equiv \left( \frac{\partial-Q}{\partial \Chi^\alpha} \right$)+Coordinate basis: $\vector{e_\alpha} \equiv \left( \frac{\partial+Q}{\partial \Chi^\alpha} \right$) - for instance, on a sphere with angles :m:$\omega, \phi$: + for instance, on a sphere with angles $\omega, \phi$: - :m:$\vector{e_\phi} = \left( \frac{\partial Q(\phi, \theta)}{\partial \phi}\right)_\theta$+ $\vector{e_\phi} = \left( \frac{\partial Q(\phi, \theta)}{\partial \phi}\right)_\theta$ Components of a vector: - :m:$\vector{A} = \frac{\partial P}{\partial \Chi^\alpha }$+ $\vector{A} = \frac{\partial P}{\partial \Chi^\alpha }$ Directional Derivatives: consider a scalar function defined on a manifold \Psi(P)- :m:$\partial_\vector{A} \Psi = A^\alpha \frac{\partial \Psi}{\partial \Chi^\alpha}$+ $\partial_\vector{A} \Psi = A^\alpha \frac{\partial \Psi}{\partial \Chi^\alpha}$ Mathematicians like to say that the coordinate bases are actually directional derivatives Tensors ------------ -A **tensor** :m:$\bold{T}$ has a number of slots (called it's **rank**), takes a vector in each slot, and returns a real number. It is linear in vectors; +A **tensor** $\bold{T}$ has a number of slots (called it's **rank**), takes a vector in each slot, and returns a real number. It is linear in vectors; as an example for a rank-3 tensor: -:m:$$\bold{T} ( \alpha \vector{A} + \beta \vector{B}, \vector{C}, \vector{D}) =+$$\bold{T} ( \alpha \vector{A} + \beta \vector{B}, \vector{C}, \vector{D}) = \alpha \bold{T} (\vector{A}, \vector{C}, \vector{D}) + \beta \bold{T}-(\vector{B}, \vector{C}, \vector{D}) $$+(\vector{B}, \vector{C}, \vector{D})$$ Even a regular vector is a tensor: pass it a second vector and take the inner product (aka dot product) to get a real. Define the **metric tensor** -:m:$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$. The +$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$. The metric tensor is rank two and symetric (the vectors A and B could be swapped without changing the scalar output value) and is the same as the inner product. -:m:$$\Delta P \cdot \Delta P \equiv \Delta P^2 \equiv (length of \Delta P)^2 A \cdot B = 1/4[ (A+B)^2 - (A-B)^2 ]$$+$$\Delta P \cdot \Delta P \equiv \Delta P^2 \equiv (length of \Delta P)^2 A \cdot B = 1/4[ (A+B)^2 - (A-B)^2 ]$$ Starting with individual vectors, we can construct tensors by taking the product of their inner products with empty slots; for example -:m:$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\_ ,\_ ,\_)$$ -:m:$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\vector{E}, \vector{F}, \vector{G}) = ( \vector{A} \cdot \vector{E})(\vector{B} \cdot \vector{F})(\vecotr{C} \cdot \vector{G})$$ +$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\_ ,\_ ,\_)$$ +$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\vector{E}, \vector{F}, \vector{G}) = ( \vector{A} \cdot \vector{E})(\vector{B} \cdot \vector{F})(\vecotr{C} \cdot \vector{G})$$ Spacetime -------------- Two types of vectors. -Timelike: :m:$\vector{\Delta P}$- :m:$(\vector{\Delta P})^2 = -(\Delta \Tau)^2$+Timelike: $\vector{\Delta P}$+ $(\vector{\Delta P})^2 = -(\Delta \Tau)^2$ -Spacelike: :m:$\vector{\Delta Q}$- :m:$(\vector{\Delta Q})^2 = +(\Delta S)^2$+Spacelike: $\vector{\Delta Q}$+ $(\vector{\Delta Q})^2 = +(\Delta S)^2$ Because product of "up" and "down" basis vectors must be a positive Kronecker delta, and timelikes squared come out negative, the time "up" basis must be negative of the time "down" basis vector.