summaryrefslogtreecommitdiffstats
path: root/physics/special relativity
diff options
context:
space:
mode:
authorbryan newbold <bnewbold@snark.mit.edu>2009-02-01 08:34:55 -0500
committerbryan newbold <bnewbold@snark.mit.edu>2009-02-01 08:34:55 -0500
commit7ad3b8aef5ad4492e94d350c0ce32d89797b3cab (patch)
tree9a18754b8025daa381ad592a632f95532b3a129b /physics/special relativity
parent7218768aba3a43f1a62867f35f05cb85a30d7ed2 (diff)
downloadknowledge-7ad3b8aef5ad4492e94d350c0ce32d89797b3cab.tar.gz
knowledge-7ad3b8aef5ad4492e94d350c0ce32d89797b3cab.zip
cleanup, fixed some math
Diffstat (limited to 'physics/special relativity')
-rw-r--r--physics/special relativity15
1 files changed, 9 insertions, 6 deletions
diff --git a/physics/special relativity b/physics/special relativity
index 41bf4b8..37fd3e9 100644
--- a/physics/special relativity
+++ b/physics/special relativity
@@ -8,7 +8,7 @@ Special Relativity
.. note:: Most of this content is based on a 2002 Caltech course taught by
Kip Thorn [PH237]_
-*See also `physics/general relativity</k/physics/generalrelativity/>`_*
+*See also `physics/general relativity</k/physics/generalrelativity/>`__*
As opposed to general relativity, special relativity takes place in a *flat*
Minkowski space time: a 4-space with three spatial dimensions and one time
@@ -17,22 +17,25 @@ dimension.
+----------------+--------------------+
| Index notation | Variable | Type |
+----------------+--------------------+
-| `$x^\0`:m: | `$t$`:m: | Time |
-| `$x^\1`:m: | `$x$`:m: | Spatial |
-| `$x^\2`:m: | `$y$`:m: | Spatial |
-| `$x^\3`:m: | `$z$`:m: | Spatial |
+| `$x^0$`:m: | `$t$`:m: | Time |
+| `$x^1$`:m: | `$x$`:m: | Spatial |
+| `$x^2$`:m: | `$y$`:m: | Spatial |
+| `$x^3$`:m: | `$z$`:m: | Spatial |
+----------------+--------------------+
Separations
-------------
-The separation `$(\Delta s)^2`:m: between two events in space time, in a given
+The separation `$(\Delta s)^2$`:m: between two events in space time, in a given
Lorentzian/inertial frame, is defined
as:
:m:`$$ (\Delta s)^2 \equiv -(\Delta t)^2 + (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 $$`
+
or
+
:m:`$$ (\Delta s)^2 \equiv -(\Delta x^0)^2 + \sum_{i,j} \delta_{ij} \Delta x^i \Delta x^j$$`
+
where :m:`$\delta_{ij}$` is the Kronecker delta (unity or 1 when
:m:`$i=j$`; zero otherwise), and the indices i and j are over the spatial
dimensions 1,2,3 (corresponding to x,y,z). It can be shown that this separation