diff options
| author | bryan newbold <bnewbold@snark.mit.edu> | 2009-02-01 08:38:00 -0500 | 
|---|---|---|
| committer | bryan newbold <bnewbold@snark.mit.edu> | 2009-02-01 08:38:00 -0500 | 
| commit | c2a4fe1d51f1306ad10168bb3d5104f1bb04c097 (patch) | |
| tree | 10f2514343907b61e29d9e46372662be8a9fa6f6 /math | |
| parent | 82c3ea3f76ef94a38e12f96de05c79f6306a42eb (diff) | |
| download | knowledge-c2a4fe1d51f1306ad10168bb3d5104f1bb04c097.tar.gz knowledge-c2a4fe1d51f1306ad10168bb3d5104f1bb04c097.zip | |
more fixes
Diffstat (limited to 'math')
| -rw-r--r-- | math/algebra | 12 | ||||
| -rw-r--r-- | math/tensors | 2 | 
2 files changed, 7 insertions, 7 deletions
| diff --git a/math/algebra b/math/algebra index 96197ff..d43a59a 100644 --- a/math/algebra +++ b/math/algebra @@ -6,42 +6,42 @@ Algebra  .. list-table:: Closure of binary operators on given sets of numbers -    * Operation +   * - Operation       - :latex:`$+$`       - :latex:`$\times$`       - :latex:`$-$`       - :latex:`$\divide$`       - :latex:`$^$`       - :latex:`$\sqrt{\text{ }}$` -    * Positive Integers +   * - Positive Integers       - Y       - Y       - N       - N       - Y       - N -    * Positive rationals +   * - Positive rationals       - Y       - Y       - N       - Y       - Y       - N -    * Rationals (and zero) +   * - Rationals (and zero)       - Y       - Y       - Y       - Y       - Y       - N -    * Reals wrt positive integers +   * - Reals wrt positive integers       - Y       - Y       - Y       - Y       - Y       - Y -    * Complex numbers +   * - Complex numbers       - Y       - Y       - Y diff --git a/math/tensors b/math/tensors index e15270a..d46810e 100644 --- a/math/tensors +++ b/math/tensors @@ -46,7 +46,7 @@ as an example for a rank-3 tensor:  Even a regular vector is a tensor: pass it a second vector and take the   inner product (aka dot product) to get a real. -Define the **metric tensor **  +Define the **metric tensor**   :m:`$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$`. The   metric tensor is rank two and symetric (the vectors A and B could be swapped   without changing the scalar output value) and is the same as the inner product.  | 
