1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
use std::io::prelude::*;
use std::fs::File;
use std::path::Path;
use std::io::SeekFrom;
use integer_encoding::FixedInt;
use std::fs::OpenOptions;
use crypto::blake2b::Blake2b;
use crypto::digest::Digest;
use crypto::ed25519;
use rand::{Rng, OsRng};
use errors::*;
use sleep::*;
/// Abstract access to Hypercore register
pub trait HyperRegister {
/// Whether the register store contains the given (data) entry
fn has(&self, index: u64) -> Result<bool>;
/// Whether the register store contains *all* known (data) entries
fn has_all(&self) -> Result<bool>;
/// If the contiguous range of entries is in the store
fn has_range(&self, start: u64, end: u64) -> Result<bool>;
/// Reads a single data entry from the store.
fn get_data_entry(&mut self, index: u64) -> Result<Vec<u8>>;
/// Writes an entry to the store. Requires the private key to be present.
fn append(&mut self, data: &[u8]) -> Result<u64>;
/// Count of data entries for this register. This is the total count (highest entry index plus
/// one); this particular store might be sparse.
fn len(&self) -> Result<u64>;
/// Total size of this register in bytes.
fn len_bytes(&mut self) -> Result<u64>;
/// [UNIMPLEMENTED] Intended to do a deeper merkel-tree verification of all stored data
fn verify(&mut self) -> Result<()>;
/// Quick sanity checks on register store robust-ness
fn check(&mut self) -> Result<()>;
/// Can this register be appended to?
fn writable(&self) -> bool;
/// Returns a single tree entry (using tree indexing, not data indexing).
fn get_tree_entry(&mut self, index: u64) -> Result<Vec<u8>>;
}
impl HyperRegister {
fn hash_leaf(data: &[u8]) -> [u8; 40] {
let mut buf = [0; 40];
u64::to_be(data.len() as u64)
.encode_fixed(&mut buf[32..40]);
let mut hash = Blake2b::new(32);
hash.input(&[0; 1]);
hash.input(&buf[32..40]);
hash.input(&data);
hash.result(&mut buf[0..32]);
buf
}
fn hash_parent(lhash: &[u8], rhash: &[u8]) -> [u8; 40] {
let mut buf = [0; 40];
// TODO: check overflow
let sum_size = u64::from_be(FixedInt::decode_fixed(&lhash[32..40])) +
u64::from_be(FixedInt::decode_fixed(&rhash[32..40]));
u64::to_be(sum_size as u64)
.encode_fixed(&mut buf[32..40]);
let mut hash = Blake2b::new(32);
hash.input(&[1; 1]);
hash.input(&buf[32..40]);
hash.input(&lhash[..]);
hash.input(&rhash[..]);
hash.result(&mut buf[0..32]);
buf
}
pub fn hash_roots(reg: &mut HyperRegister, index: u64) -> Result<Vec<u8>> {
let mut buf = [0; 40];
let mut hash = Blake2b::new(32);
let mut index_buf = [0; 8];
hash.input(&[2; 1]);
for ri in HyperRegister::tree_root_nodes(index) {
u64::to_be(ri).encode_fixed(&mut index_buf);
let node = reg.get_tree_entry(ri)?;
hash.input(&node[0..32]);
hash.input(&index_buf);
hash.input(&node[32..40]);
}
hash.result(&mut buf[0..32]);
Ok(buf.to_vec())
}
fn tree_root_nodes(data_count: u64) -> Vec<u64> {
// Calculates the root notes for a given length (of data entries, not tree entries)
// TODO: this should be an iterator
// NB: this is a relatively "hot" function, gets called (repeatedly?) on every mutation,
// and potentially in inner loops of lookups.
if data_count == 0 {
return vec![];
}
// Convert the count to a (descending) list of power-of-2 components
let mut x = 0;
let mut components = vec![];
while 2u64.pow(x) <= data_count {
if (data_count & 2u64.pow(x)) != 0 {
components.push(2u64.pow(x));
}
x += 1;
}
components.reverse();
// Add and accumulate
let mut accum = 0;
let mut roots = vec![];
for x in components {
roots.push(accum + (x - 1));
accum += 2*x;
}
roots
}
pub fn get_data_offset(reg: &mut HyperRegister, index: u64) -> Result<u64> {
// TODO: this is a naive (linear) implementation
// log(N) would go up previous parent nodes (eg, use root_nodes())
let mut sum: u64 = 0;
for i in 0..index {
let leaf = reg.get_tree_entry(i*2)?;
sum += u64::from_be(FixedInt::decode_fixed(&leaf[32..40]));
}
Ok(sum)
}
/// Every node has a parent, so this function won't fail unless index is over 2^62, in which
/// case it would overflow and panics instead.
fn tree_parent_index(index: u64) -> u64 {
for i in 0..62 {
// find lowest-significant zero bit
if (index & (1 << i)) == 0 {
// set that bit and clear next higher
return ((index | (1 << i))) & !(1 << (i+1));
}
}
panic!("Parent lookup overflowed, huge index!");
}
/// Calling this on a leaf node is an error, as is calling very high node numbers (> 2^62)
fn tree_child_indices(index: u64) -> Result<(u64,u64)> {
if index % 2 == 0 {
bail!("Leaf tree nodes have no children");
}
for i in 0..62 {
// find lowest-significant zero bit...
if (index & (1 << i)) == 0 {
// larger child has this bit high, next lower bit cleared
let right = ((index | (1 << i))) & !(1 << (i-1));
// smaller child has next lower bit cleared
let left = index & !(1 << (i-1));
return Ok((left, right));
}
}
bail!("Child lookup overflowed, huge index!");
}
}
#[test]
fn test_tree_root_nodes() {
assert_eq!(HyperRegister::tree_root_nodes(0), vec![]);
assert_eq!(HyperRegister::tree_root_nodes(1), vec![0]);
assert_eq!(HyperRegister::tree_root_nodes(2), vec![1]);
assert_eq!(HyperRegister::tree_root_nodes(3), vec![1,4]);
assert_eq!(HyperRegister::tree_root_nodes(4), vec![3]);
assert_eq!(HyperRegister::tree_root_nodes(5), vec![3,8]);
assert_eq!(HyperRegister::tree_root_nodes(6), vec![3,9]);
assert_eq!(HyperRegister::tree_root_nodes(7), vec![3,9,12]);
assert_eq!(HyperRegister::tree_root_nodes(8), vec![7]);
}
#[test]
fn test_tree_parent_index() {
assert_eq!(HyperRegister::tree_parent_index(0), 1);
assert_eq!(HyperRegister::tree_parent_index(1), 3);
assert_eq!(HyperRegister::tree_parent_index(2), 1);
assert_eq!(HyperRegister::tree_parent_index(3), 7);
assert_eq!(HyperRegister::tree_parent_index(4), 5);
assert_eq!(HyperRegister::tree_parent_index(5), 3);
assert_eq!(HyperRegister::tree_parent_index(6), 5);
assert_eq!(HyperRegister::tree_parent_index(7), 15);
assert_eq!(HyperRegister::tree_parent_index(8), 9);
assert_eq!(HyperRegister::tree_parent_index(9), 11);
assert_eq!(HyperRegister::tree_parent_index(21), 19);
assert_eq!(HyperRegister::tree_parent_index(22), 21);
}
#[test]
fn test_tree_child_indices() {
assert!(HyperRegister::tree_child_indices(0).is_err());
assert!(HyperRegister::tree_child_indices(1024).is_err());
assert_eq!(HyperRegister::tree_child_indices(1).unwrap(), (0, 2));
assert_eq!(HyperRegister::tree_child_indices(3).unwrap(), (1, 5));
assert_eq!(HyperRegister::tree_child_indices(5).unwrap(), (4, 6));
assert_eq!(HyperRegister::tree_child_indices(7).unwrap(), (3, 11));
assert_eq!(HyperRegister::tree_child_indices(9).unwrap(), (8, 10));
assert_eq!(HyperRegister::tree_child_indices(11).unwrap(), (9, 13));
assert_eq!(HyperRegister::tree_child_indices(13).unwrap(), (12, 14));
assert_eq!(HyperRegister::tree_child_indices(15).unwrap(), (7, 23));
assert_eq!(HyperRegister::tree_child_indices(19).unwrap(), (17, 21));
}
/// Implementation of HyperRegister using a local directory of SLEEP files
#[derive(Debug)]
pub struct SleepDirRegister {
tree_sleep: SleepFile,
sign_sleep: SleepFile,
bitfield_sleep: SleepFile,
data_file: Option<File>,
// Except, these should be Ed25519 keys, not bytes
pub_key: Vec<u8>,
secret_key: Option<Vec<u8>>,
}
impl SleepDirRegister {
pub fn open(directory: &Path, prefix: &str, writable: bool) -> Result<SleepDirRegister> {
// read public key from disk
let mut pub_key: Vec<u8> = vec![];
{
let mut key_file = OpenOptions::new()
.read(true)
.write(false)
.open(directory.join(Path::new(&(prefix.to_owned() + ".key"))))?;
// TODO: check key length?
key_file.read_to_end(&mut pub_key)?;
}
let data_path = &(prefix.to_owned() + ".data");
let data_path = Path::new(data_path);
let data_file = if data_path.is_file() {
Some(OpenOptions::new()
.read(true)
.write(writable)
.open(data_path)?)
} else {
None
};
let tree_sleep = SleepFile::open(
&directory.join(Path::new(&(prefix.to_owned() + ".tree"))), writable)?;
let sign_sleep = SleepFile::open(
&directory.join(Path::new(&(prefix.to_owned() + ".signatures"))), writable)?;
let bitfield_sleep = SleepFile::open(
&directory.join(Path::new(&(prefix.to_owned() + ".bitfield"))), writable)?;
let mut sf = SleepDirRegister {
tree_sleep,
sign_sleep,
bitfield_sleep,
data_file,
pub_key,
secret_key: None,
};
sf.check()?;
Ok(sf)
}
/// In addition to what one would expect, also creates an Ed25519 key-pair using OsRng
pub fn create(directory: &Path, prefix: &str) -> Result<SleepDirRegister> {
let mut rand_seed = vec![0; 32];
let mut rng = OsRng::new()?;
rng.fill_bytes(&mut rand_seed);
let (secret_key, pub_key) = ed25519::keypair(&rand_seed);
println!("{:?}", directory.join(Path::new(&(prefix.to_owned() + ".key"))));
{
let mut key_file = OpenOptions::new()
.write(true)
.create_new(true)
.open(directory.join(Path::new(&(prefix.to_owned() + ".key"))))?;
key_file.write_all(&pub_key)?;
}
let data_file = OpenOptions::new()
.read(true)
.write(true)
.create_new(true)
.open(directory.join(Path::new(&(prefix.to_owned() + ".data"))))?;
let tree_sleep = SleepFile::create(
&directory.join(Path::new(&(prefix.to_owned() + ".tree"))),
0x05025702,
40,
Some("BLAKE2b".to_string()))?;
let sign_sleep = SleepFile::create(
&directory.join(Path::new(&(prefix.to_owned() + ".signatures"))),
0x05025701,
64,
Some("Ed25519".to_string()))?;
let bitfield_sleep = SleepFile::create(
&directory.join(Path::new(&(prefix.to_owned() + ".bitfield"))),
0x05025700,
3328,
None)?;
let mut sf = SleepDirRegister {
tree_sleep,
sign_sleep,
bitfield_sleep,
data_file: Some(data_file),
pub_key: pub_key.to_vec(),
secret_key: Some(secret_key.to_vec()),
};
sf.check()?;
Ok(sf)
}
}
impl HyperRegister for SleepDirRegister {
fn has(&self, index: u64) -> Result<bool> {
// looks in bitfield
unimplemented!()
}
fn has_all(&self) -> Result<bool> {
self.has_range(0, self.len()?)
}
fn has_range(&self, start: u64, end: u64) -> Result<bool> {
// This function is un-motivated and could be removed
assert!(end > start);
for i in start..end {
if !self.has(i)? {
return Ok(false);
}
}
Ok(true)
}
fn get_data_entry(&mut self, index: u64) -> Result<Vec<u8>> {
// Get metadata about chunk (offset and length)
let offset = HyperRegister::get_data_offset(self, index)?;
// Do we even have this chunk?
if !self.has(index)? {
bail!("Don't have that chunk");
}
let data_file = if let Some(ref mut df) = self.data_file {
df
} else {
bail!("No data file in this register");
};
let leaf = self.tree_sleep.read(index*2)?;
let data_len = u64::from_be(FixedInt::decode_fixed(&leaf[32..40]));
// TODO: avoid foot-gun in development: cap at ~1 billion bytes
assert!(data_len < 2u64.pow(29));
// Read chunk
let mut data = vec![0; data_len as usize];
data_file.seek(SeekFrom::Start(offset))?;
data_file.read_exact(&mut data)?;
// TODO: check the hash? separate function?
Ok(data)
}
fn get_tree_entry(&mut self, index: u64) -> Result<Vec<u8>> {
self.tree_sleep.read(index)
}
fn append(&mut self, data: &[u8]) -> Result<u64> {
if !self.data_file.is_some() {
bail!("No data file in this register");
};
let index = self.len()?;
// 1. Hash data chunk
let leaf_hash = HyperRegister::hash_leaf(data);
// 2. Append data to data file
if let Some(ref mut df) = self.data_file {
df.seek(SeekFrom::End(0))?;
df.write_all(data)?;
df.sync_data()?;
}
// 3. Add hash to tree file, update merkel tree
self.tree_sleep.write(index*2, &leaf_hash)?;
let mut parent = HyperRegister::tree_parent_index(index*2);
while parent < index*2 {
let (left, right) = HyperRegister::tree_child_indices(parent)?;
let (left, right) = (self.tree_sleep.read(left)?,
self.tree_sleep.read(right)?);
let parent_hash = HyperRegister::hash_parent(&left[0..40], &right[0..40]);
self.tree_sleep.write(parent, &parent_hash[0..40]);
parent = HyperRegister::tree_parent_index(index);
}
// 4. Add signature to signature file
let root_hash = HyperRegister::hash_roots(self, index+1)?;
let root_sig = ed25519::signature(&root_hash, &self.secret_key.clone().unwrap());
self.sign_sleep.append(&root_sig)?;
// 5. Update bitfile
Ok(index)
}
fn len(&self) -> Result<u64> {
// Length in entry count.
let tree_len = self.tree_sleep.len()?;
if tree_len == 0 {
Ok(0)
} else if tree_len % 2 != 1 {
bail!("Even number of tree file SLEEP entries");
} else {
Ok((self.tree_sleep.len()? / 2) + 1)
}
}
fn len_bytes(&mut self) -> Result<u64> {
// TODO: this is a naive (linear) implementation
// log(N) would go up previous parent nodes (eg, use tree_root_nodes())
let mut sum: u64 = 0;
for i in 0..self.len()? {
let leaf = self.get_tree_entry(i*2)?;
sum += u64::from_be(FixedInt::decode_fixed(&leaf[32..40]));
}
Ok(sum)
}
fn verify(&mut self) -> Result<()> {
unimplemented!()
}
fn check(&mut self) -> Result<()> {
let sign_len = self.sign_sleep.len()?;
let tree_len = self.tree_sleep.len()?;
if (tree_len == 0) && (sign_len == 0) {
return Ok(())
}
if tree_len != (sign_len * 2) - 1 {
bail!("Inconsistent SLEEP signature/tree file sizes");
}
let computed = self.len_bytes()?;
if let Some(ref df) = self.data_file {
let file_size = df.metadata()?.len();
if file_size != computed {
bail!("Computed vs. data file size mismatch");
}
}
Ok(())
}
fn writable(&self) -> bool {
unimplemented!()
}
}
#[test]
fn test_sdr_open() {
let mut sdr = SleepDirRegister::open(
Path::new("test-data/dat/simple/.dat/"), "metadata", false).unwrap();
// Values from 'dat log'
assert_eq!(sdr.len().unwrap(), 3);
assert_eq!(sdr.len_bytes().unwrap(), 145);
let mut sdr = SleepDirRegister::open(
Path::new("test-data/dat/simple/.dat/"), "content", false).unwrap();
// Values from 'dat log'
assert_eq!(sdr.len().unwrap(), 2);
assert_eq!(sdr.len_bytes().unwrap(), 204);
}
#[test]
fn test_sdr_create() {
use tempdir::TempDir;
let tmp_dir = TempDir::new("geniza-test").unwrap();
let mut sdr = SleepDirRegister::create(tmp_dir.path(), "dummy").unwrap();
assert_eq!(sdr.len().unwrap(), 0);
assert_eq!(sdr.len_bytes().unwrap(), 0);
}
#[test]
fn test_sdr_append() {
use tempdir::TempDir;
let tmp_dir = TempDir::new("geniza-test").unwrap();
let mut sdr = SleepDirRegister::create(tmp_dir.path(), "dummy").unwrap();
sdr.append("hello world!".as_bytes()).unwrap();
sdr.check().unwrap();
assert_eq!(sdr.len().unwrap(), 1);
assert_eq!(sdr.len_bytes().unwrap(), 12);
// XXX: some bug here around >= 5 (?)
let count = 4; // make this ~1000 when things are faster
for i in 0..count {
sdr.append(&[1,2,3,4,5]).unwrap();
}
sdr.check().unwrap();
assert_eq!(sdr.len().unwrap(), 1+count);
assert_eq!(sdr.len_bytes().unwrap(), 12 + (count*5));
}
|