1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
# pylint: disable=C0103
"""
Clustering stage.
"""
import collections
import fileinput
import itertools
import json
import logging
import operator
import os
import re
import string
import subprocess
import sys
import tempfile
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple
import fuzzy
from pydantic import BaseModel
__all__ = [
"release_key_title",
"release_key_title_normalized",
"release_key_title_nysiis",
"sort_by_column",
"group_by",
"Cluster",
]
class Contrib(BaseModel):
"""
A contributor.
"""
index: Optional[int]
raw_name: Optional[str]
given_name: Optional[str]
surname: Optional[str]
role: Optional[str]
class KeyDoc(BaseModel):
"""
A document from which we can derive a key, e.g. a release entity.
"""
ident: str
title: Optional[str]
contribs: Optional[List[Contrib]]
class ClusterResult(BaseModel):
"""
Result of clustering.
XXX: We could also include the complete document, that would keep it simple
at the expense of a few more things to read.
"""
key: str
values: List[str]
comment: str
ids: str
title: str
contribs: str
year: str
get_ident_title = operator.itemgetter("ident", "title")
ws_replacer = str.maketrans({"\t": " ", "\n": " "})
non_word_re = re.compile(r'[\W_]+', re.UNICODE)
printable_no_punct = string.digits + string.ascii_letters + string.whitespace
def slugify_string(s: str) -> str:
"""
Keeps ascii chars and single whitespace only.
"""
return ''.join((c for c in s.lower() if c in printable_no_punct))
# Notes: untie from release_entity, as we are only using a few fields. Maybe
# it's a jsob blob, with a pydantic spec and schema.
def release_key_title(doc: KeyDoc) -> Tuple[str, str]:
ident, title = get_ident_title(doc)
if not title:
raise ValueError('title missing for {}'.format(ident))
title = title.translate(ws_replacer).strip()
return (ident, title)
def release_key_title_normalized(doc: KeyDoc) -> Tuple[str, str]:
ident, title = release_key_title(doc)
title = re.sub(r'[ ]{2,}', ' ', title).lower()
return (ident, non_word_re.sub('', title))
def release_key_title_nysiis(doc: KeyDoc) -> Tuple[str, str]:
ident, title = release_key_title(doc)
return (ident, fuzzy.nysiis(title))
def release_key_title_ngram(doc: KeyDoc, n=3) -> Tuple[str, str]:
"""
Derive a key from title and authors. Authors in contribs list:
"contribs": [
{
"index": 0,
"raw_name": "Meise Botanic Garden",
"role": "author"
}
],
Tokenize title, remote stopwords, lookup first three, lookup last three,
plus authors. TODO(miku): authors.
"""
ident, title = get_ident_title(doc)
slug_title = slugify_string(title)
tokens = slug_title.split()
if len(tokens) < 2 * n:
key = ''.join(tokens)
else:
key = ''.join(tokens[:3] + tokens[-3:])
return (ident, key)
def sort_by_column(filename: str,
opts: str = "-k 2",
fast: bool = True,
mode: str = "w",
prefix: str = "fuzzycat-",
tmpdir: Optional[str] = None):
"""
Sort tabular file with sort(1), returns the filename of the sorted file.
TODO: use separate /fast/tmp for sort.
"""
with tempfile.NamedTemporaryFile(delete=False, mode=mode, prefix=prefix) as tf:
env = os.environ.copy()
if tmpdir is not None:
env["TMPDIR"] = tmpdir
if fast:
env["LC_ALL"] = "C"
subprocess.run(["sort"] + opts.split() + [filename], stdout=tf, env=env, check=True)
return tf.name
def group_by(seq: collections.abc.Iterable,
key: Callable[[Any], str] = None,
value: Callable[[Any], str] = None,
comment: str = "") -> Generator[Any, None, None]:
"""
Iterate over lines in filename, group by key (a callable deriving the key
from the line), then apply value callable on the same value to emit a
minimal document, containing the key and identifiers belonging to a
cluster.
"""
for k, g in itertools.groupby(seq, key=key):
doc = {
"k": k.strip(),
"v": [value(v) for v in g],
}
if comment:
doc["c"] = comment
yield doc
def cut(f: int = 0, sep: str = '\t', ignore_missing_column: bool = True):
"""
Return a callable, that extracts a given column from a file with a specific
separator. TODO: move this into more generic place.
"""
def func(value):
parts = value.strip().split(sep)
if f >= len(parts):
if ignore_missing_column:
return ""
raise ValueError('cannot split value {} into {} parts'.format(value, f))
return parts[f]
return func
class Cluster:
"""
Cluster scaffold for release entities. XXX: move IO/files out, allow any iterable.
"""
def __init__(self,
files="-",
output=sys.stdout,
keyfunc=lambda v: v,
prefix='fuzzycat-',
tmpdir=None):
"""
Files can be a list of files or "-" for stdin.
"""
self.files = files
self.keyfunc = keyfunc
self.output = output
self.prefix = prefix
self.tmpdir = tmpdir
self.logger = logging.getLogger('fuzzycat.cluster')
def run(self):
"""
Run clustering and write output to given stream or file.
"""
keyfunc = self.keyfunc # Save a lookup in loop.
counter: Dict[str, int] = collections.Counter()
with tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=self.prefix) as tf:
for line in fileinput.input(files=self.files):
try:
id, key = keyfunc(json.loads(line))
print("{}\t{}".format(id, key), file=tf)
except (KeyError, ValueError):
counter["key_extraction_failed"] += 1
else:
counter["key_ok"] += 1
sbc = sort_by_column(tf.name, opts='-k 2', prefix=self.prefix, tmpdir=self.tmpdir)
with open(sbc) as f:
comment = keyfunc.__name__
for doc in group_by(f, key=cut(f=1), value=cut(f=0), comment=comment):
counter["groups"] += 1
json.dump(doc, self.output)
self.output.write("\n")
os.remove(sbc)
os.remove(tf.name)
return counter
|