1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
# pylint: disable=C0103
"""
Clustering stage.
* [ ] verify needs whole document
* [ ] parallelization misses groups
* [ ] cached match key store (tsv, sqlite3), something ~/.cache/...
* [ ] reproducibly run tests
* [ ] place for put md record tests
----
* [ ] hadoop -> py (bn)
* [ ] gnu parallel, share command line -- note (bn)
----
Ideas:
* lookup potential matches; TSV [key, ...]; sort
* maybe new "schema" - size vs "common schema" -- key <TAB> {"bibjson": ...}
* merge-join
```
$ fuzzycat.main keygen -s "algo" < ours | sort -k1,1 > a.tsv
$ fuzzycat.main keygen -s "algo" < other | sort -k1,1 > b.tsv
$ merge-join a.tsv b.tsv
```
A couple of "keygen" algos.
> 10k/s, 1B, ~day
Partial fields should be ok.
Q:
* nysiis
Deps.
* pydantic; json "omitempty" -- get rid of it?
* orjson (serialize datetime) -- maybe enough w/ dataclasses w/ dataclasses
fuzzycat.main -> `__main__.py`
* elasticsearch-py >> elasticsearch
Matching releases to non-release entities.
----
Features and integration.
* work grouping at import time; random pdfs; requires strong verification (vs cgraph)
* email out to OCI
"""
import collections
import fileinput
import itertools
import json
import logging
import operator
import os
import re
import string
import subprocess
import sys
import tempfile
from dataclasses import dataclass, field
from typing import IO, Any, Callable, Dict, Generator, List, Optional, Tuple
import fuzzy
__all__ = [
"release_key_title",
"release_key_title_normalized",
"release_key_title_nysiis",
"sort_by_column",
"group_by",
"Cluster",
]
@dataclass
class Contrib:
"""
A contributor.
"""
index: Optional[int]
raw_name: Optional[str]
given_name: Optional[str]
surname: Optional[str]
role: Optional[str]
@dataclass
class KeyDoc:
"""
A document from which we can derive a key, e.g. a release entity.
"""
ident: str
title: str
contribs: List[Contrib] = field(default_factory=list)
@dataclass
class ClusterResult:
"""
Result of clustering, one key and a list of
A first approach: pass document through.
"""
key: str
comment: str
docs: List[Any] = field(default_factory=list)
get_ident_title = operator.itemgetter("ident", "title")
ws_replacer = str.maketrans({"\t": " ", "\n": " "})
non_word_re = re.compile(r'[\W_]+', re.UNICODE)
printable_no_punct = string.digits + string.ascii_letters + string.whitespace
def slugify_string(s: str) -> str:
"""
Keeps ascii chars and single whitespace only.
"""
return ''.join((c for c in s.lower() if c in printable_no_punct))
# Notes: untie from release_entity, as we are only using a few fields. Maybe
# it's a jsob blob, with a pydantic spec and schema.
def release_key_title(doc: KeyDoc) -> Tuple[str, str]:
ident, title = get_ident_title(doc)
if not title:
raise ValueError('title missing for {}'.format(ident))
title = title.translate(ws_replacer).strip()
return (ident, title)
def release_key_title_normalized(doc: KeyDoc) -> Tuple[str, str]:
ident, title = release_key_title(doc)
title = re.sub(r'[ ]{2,}', ' ', title).lower()
return (ident, non_word_re.sub('', title))
def release_key_title_nysiis(doc: KeyDoc) -> Tuple[str, str]:
"""
Use NYSIIS New York State Identification and Intelligence System.
"""
ident, title = release_key_title(doc)
return (ident, fuzzy.nysiis(title))
def release_key_title_ngram(doc: KeyDoc, n=3) -> Tuple[str, str]:
"""
Derive a key from title.
Tokenize title, remote stopwords, lookup first three, lookup last three,
plus authors. TODO(miku): authors.
"""
ident, title = get_ident_title(doc)
slug_title = slugify_string(title)
tokens = slug_title.split()
if len(tokens) < 2 * n:
key = ''.join(tokens)
else:
key = ''.join(tokens[:3] + tokens[-3:])
return (ident, key)
def cut(f: int = 0, sep: str = '\t', ignore_missing_column: bool = True):
"""
Return a callable, that extracts a given column from a file with a specific
separator. TODO: move this into more generic place.
"""
def func(value):
parts = value.strip().split(sep)
if f >= len(parts):
if ignore_missing_column:
return ""
raise ValueError('cannot split value {} into {} parts'.format(value, f))
return parts[f]
return func
class Cluster:
"""
Runs clustering over a potentially large number of records.
"""
def __init__(self,
iterable: collections.abc.Iterable,
key: Callable[[Any], Tuple[str, str]],
output: IO[str] = sys.stdout,
prefix: str = "fuzzycat-",
tmpdir: str = tempfile.gettempdir(),
strict: bool = False):
"""
Setup a clusterer, using a custom key function.
"""
self.iterable: collections.abc.Iterable = iterable
self.key: Callable[[Any], Tuple[str, str]] = key
self.output: IO[str] = output
self.prefix: str = prefix
self.tmpdir: str = tmpdir
self.counter: Dict[str, int] = collections.Counter({
"key_err": 0,
"key_ok": 0,
"num_clusters": 0,
})
def run(self):
"""
First map documents to keys, then group by keys.
Outline: json -> tsv -> sort -> group -> json
"""
with tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=self.prefix) as tf:
for line in self.iterable:
try:
doc = json.loads(line)
id, key = self.key(doc)
# XXX: if the line itself contains tabs, we need to remove
# them here; maybe offer TSV and JSON output and extra flag
print("{}\t{}\t{}".format(id, key, line.replace("\t", " ")), file=tf)
except (KeyError, ValueError):
if strict:
raise
self.counter["key_err"] += 1
else:
self.counter["key_ok"] += 1
try:
sf = self.sort(tf.name, opts='-k 2')
with open(sf) as f:
for doc in self.group_by(f, key=cut(f=1)):
self.counter["num_clusters"] += 1
json.dump(doc, self.output)
self.output.write("\n")
except Exception as exc:
raise
finally:
os.remove(sf)
os.remove(tf.name)
return self.counter
def sort(self, filename: str, opts: str = "-k 2", fast: bool = True, mode: str = "w"):
"""
Sort tabular file with sort(1), returns the filename of the sorted file.
TODO: use separate /fast/tmp for sort.
"""
with tempfile.NamedTemporaryFile(delete=False, mode=mode, prefix=self.prefix) as tf:
env = os.environ.copy()
env["TMPDIR"] = self.tmpdir
if fast:
env["LC_ALL"] = "C"
subprocess.run(["sort"] + opts.split() + [filename], stdout=tf, env=env, check=True)
return tf.name
def group_by(self,
seq: collections.abc.Iterable,
key: Callable[[Any], str] = None) -> Generator[Any, None, None]:
"""
Extract a key from elements of an iterable and group them. Just as
uniq(1), the iterable must be ordered for this to work.
"""
for k, g in itertools.groupby(seq, key=key):
items = list(g)
payload = []
for line in items:
fields = line.split("\t")
if len(fields) < 3:
continue
payload.append(json.loads(fields[2]))
doc = {
"k": k.strip(),
"v": payload,
}
yield doc
|