aboutsummaryrefslogtreecommitdiffstats
path: root/notes
diff options
context:
space:
mode:
Diffstat (limited to 'notes')
-rw-r--r--notes/old_pipeline.md177
1 files changed, 177 insertions, 0 deletions
diff --git a/notes/old_pipeline.md b/notes/old_pipeline.md
new file mode 100644
index 0000000..2f84d66
--- /dev/null
+++ b/notes/old_pipeline.md
@@ -0,0 +1,177 @@
+
+## Performance
+
+For development, we worked on a `release_export_expanded.json` dump (113G/700G zstd/plain, 154,203,375 lines) and with the [fatcat API](https://api.fatcat.wiki/).
+
+
+### Clustering
+
+Clustering derives sets of similar documents from a [fatcat database release
+dump](https://archive.org/details/fatcat_snapshots_and_exports?&sort=-publicdate).
+
+
+Example running clustering:
+
+```
+$ python -m fuzzycat cluster -t tsandcrawler < data/re.json | zstd -c -T0 > cluster.json.zst
+```
+
+Clustering works in a three step process:
+
+1. key extraction for each document (choose algorithm)
+2. sorting by keys (via [GNU sort](https://www.gnu.org/software/coreutils/manual/html_node/sort-invocation.html))
+3. group by key and write out ([itertools.groupby](https://docs.python.org/3/library/itertools.html#itertools.groupby))
+
+Note: For long running processes, this all-or-nothing approach is impractical;
+e.g. running clustering on the joint references and fatcat dataset (2B records)
+takes 24h+.
+
+Ideas:
+
+* [ ] make (sorted) key extraction a fast standalone thing
+
+> `cat data.jsonl | fuzzycat-key --algo X > data.key.tsv`
+
+Where `data.key` group (id, key, blob) or the like. Make this line speed (maybe
+w/ rust). Need to carry the blob, as we do not want to restrict options.
+
+
+## Verification
+
+Run verification (pairwise *double-check* of match candidates in a cluster).
+
+```
+$ time zstdcat -T0 sample_cluster.json.zst | python -m fuzzycat verify > sample_verify.txt
+
+real 7m56.713s
+user 8m50.703s
+sys 0m29.262s
+```
+
+This is a one-pass operation. For processing 150M docs, we very much depend on
+the documents being on disk in a file (we keep the complete document in the
+clustering result).
+
+Example results:
+
+```
+3450874 Status.EXACT Reason.TITLE_AUTHOR_MATCH
+2619990 Status.STRONG Reason.SLUG_TITLE_AUTHOR_MATCH
+2487633 Status.DIFFERENT Reason.YEAR
+2434532 Status.EXACT Reason.WORK_ID
+2085006 Status.DIFFERENT Reason.CONTRIB_INTERSECTION_EMPTY
+1397420 Status.DIFFERENT Reason.SHARED_DOI_PREFIX
+1355852 Status.DIFFERENT Reason.RELEASE_TYPE
+1290162 Status.AMBIGUOUS Reason.DUMMY
+1145511 Status.DIFFERENT Reason.BOOK_CHAPTER
+1009657 Status.DIFFERENT Reason.DATASET_DOI
+ 996503 Status.STRONG Reason.PMID_DOI_PAIR
+ 868951 Status.EXACT Reason.DATACITE_VERSION
+ 796216 Status.STRONG Reason.DATACITE_RELATED_ID
+ 704154 Status.STRONG Reason.FIGSHARE_VERSION
+ 534963 Status.STRONG Reason.VERSIONED_DOI
+ 343310 Status.STRONG Reason.TOKENIZED_AUTHORS
+ 334974 Status.STRONG Reason.JACCARD_AUTHORS
+ 293835 Status.STRONG Reason.PREPRINT_PUBLISHED
+ 269366 Status.DIFFERENT Reason.COMPONENT
+ 263626 Status.DIFFERENT Reason.SUBTITLE
+ 224021 Status.AMBIGUOUS Reason.SHORT_TITLE
+ 152990 Status.DIFFERENT Reason.PAGE_COUNT
+ 133811 Status.AMBIGUOUS Reason.CUSTOM_PREFIX_10_5860_CHOICE_REVIEW
+ 122600 Status.AMBIGUOUS Reason.CUSTOM_PREFIX_10_7916
+ 79664 Status.STRONG Reason.CUSTOM_IEEE_ARXIV
+ 46649 Status.DIFFERENT Reason.CUSTOM_PREFIX_10_14288
+ 39797 Status.DIFFERENT Reason.JSTOR_ID
+ 38598 Status.STRONG Reason.CUSTOM_BSI_UNDATED
+ 18907 Status.STRONG Reason.CUSTOM_BSI_SUBDOC
+ 15465 Status.EXACT Reason.DOI
+ 13393 Status.DIFFERENT Reason.CUSTOM_IOP_MA_PATTERN
+ 10378 Status.DIFFERENT Reason.CONTAINER
+ 3081 Status.AMBIGUOUS Reason.BLACKLISTED
+ 2504 Status.AMBIGUOUS Reason.BLACKLISTED_FRAGMENT
+ 1273 Status.AMBIGUOUS Reason.APPENDIX
+ 1063 Status.DIFFERENT Reason.TITLE_FILENAME
+ 104 Status.DIFFERENT Reason.NUM_DIFF
+ 4 Status.STRONG Reason.ARXIV_VERSION
+```
+
+## A full run
+
+Single threaded, 42h.
+
+```
+$ time zstdcat -T0 release_export_expanded.json.zst | \
+ TMPDIR=/bigger/tmp python -m fuzzycat cluster --tmpdir /bigger/tmp -t tsandcrawler | \
+ zstd -c9 > cluster_tsandcrawler.json.zst
+{
+ "key_fail": 0,
+ "key_ok": 154202433,
+ "key_empty": 942,
+ "key_denylist": 0,
+ "num_clusters": 124321361
+}
+
+real 2559m7.880s
+user 2605m41.347s
+sys 118m38.141s
+```
+
+So, 29881072 (about 20%) docs in the potentially duplicated set. Verification (about 15h w/o parallel):
+
+```
+$ time zstdcat -T0 cluster_tsandcrawler.json.zst | python -m fuzzycat verify | \
+ zstd -c9 > cluster_tsandcrawler_verified_3c7378.tsv.zst
+
+...
+
+real 927m28.631s
+user 939m32.761s
+sys 36m47.602s
+```
+
+----
+
+# Misc
+
+
+## Usage
+
+Release clusters start with release entities json lines.
+
+```shell
+$ cat data/sample.json | python -m fuzzycat cluster -t title > out.json
+```
+
+Clustering 1M records (single core) takes about 64s (15K docs/s).
+
+```shell
+$ head -1 out.json
+{
+ "k": "裏表紙",
+ "v": [
+ ...
+ ]
+}
+```
+
+Using GNU parallel to make it faster.
+
+```
+$ cat data/sample.json | parallel -j 8 --pipe --roundrobin python -m fuzzycat.main cluster -t title
+```
+
+Interestingly, the parallel variants detects fewer clusters (because data is
+split and clusters are searched within each batch). TODO(miku): sort out sharding bug.
+
+# Notes on Refs
+
+* technique from fuzzycat ported in parts to [skate](https://github.com/miku/skate) - to go from refs and release dataset to a number of clusters, relating references to releases
+* need to verify, but not the references against each other, only refs againt the release
+
+# Notes on Performance
+
+While running bulk (1B+) clustering and verification, even with parallel,
+fuzzycat got slow. The citation graph project therefore contains a
+reimplementation of `fuzzycat.verify` and related functions in Go, which in
+this case is an order of magnitude faster. See:
+[skate](https://git.archive.org/martin/cgraph/-/tree/master/skate).