diff options
author | Bryan Newbold <bnewbold@archive.org> | 2020-10-16 19:59:14 -0700 |
---|---|---|
committer | Bryan Newbold <bnewbold@archive.org> | 2020-10-16 19:59:14 -0700 |
commit | c284c0f3aad801dbd8b477fb62b50ab63c990890 (patch) | |
tree | 440ef06a88f1468da7931af1dd21cbae9fb22619 /fatcat_scholar | |
parent | da121979c8481a5e1f6cf103e2d77363b31018c9 (diff) | |
download | fatcat-scholar-c284c0f3aad801dbd8b477fb62b50ab63c990890.tar.gz fatcat-scholar-c284c0f3aad801dbd8b477fb62b50ab63c990890.zip |
first implementation of Kafka worker base class
Diffstat (limited to 'fatcat_scholar')
-rw-r--r-- | fatcat_scholar/kafka.py | 219 |
1 files changed, 219 insertions, 0 deletions
diff --git a/fatcat_scholar/kafka.py b/fatcat_scholar/kafka.py new file mode 100644 index 0000000..5faff9a --- /dev/null +++ b/fatcat_scholar/kafka.py @@ -0,0 +1,219 @@ +import sys +import json +import signal +from collections import Counter +from typing import List, Any + +from confluent_kafka import Consumer, Producer, KafkaException + + +class KafkaWorker(object): + """ + Base class for Scholar workers which consume from Kafka topics. + + Configuration (passed to __init__): + + kafka_brokers (List[str]): brokers to connect to + + consume_topics (List[str]): topics to consume from + + consumer_group (str): kafka consumer group + + batch_size (int): number of records to consume and process at a time + + batch_timeout_sec (int): max seconds for each batch to process. set to 0 to disable + + API: + + __init__() + + run() + starts consuming, calling process_batch() for each message batch + + process_batch(batch: List[dict]) -> None + implemented by sub-class + + process_msg(msg: dict) -> None + implemented by sub-class + + Example of producing (in a worker): + + producer = self.create_kafka_producer(...) + + producer.produce( + topic, + some_obj.json(exclude_none=True).encode('UTF-8'), + key=key, + on_delivery=self._fail_fast_produce) + + # check for errors etc + producer.poll(0) + """ + + def __init__( + self, + kafka_brokers: List[str], + consume_topics: List[str], + consumer_group: str, + **kwargs: Any, + ): + self.counts: Counter = Counter() + self.kafka_brokers = kafka_brokers + self.batch_size = kwargs.get("batch_size", 1) + self.batch_timeout_sec = kwargs.get("batch_timeout_sec", 30) + self.poll_interval_sec = kwargs.get("poll_interval_sec", 5.0) + self.consumer = self.create_kafka_consumer( + kafka_brokers, consume_topics, consumer_group + ) + + @staticmethod + def _fail_fast_produce(err: Any, msg: Any) -> None: + if err is not None: + print("Kafka producer delivery error: {}".format(err), file=sys.stderr) + raise KafkaException(err) + + @staticmethod + def _timeout_handler(signum: Any, frame: Any) -> None: + raise TimeoutError("timeout processing record") + + @staticmethod + def create_kafka_consumer( + kafka_brokers: List[str], consume_topics: List[str], consumer_group: str + ) -> Consumer: + """ + NOTE: it is important that consume_topics be str, *not* bytes + """ + + def _on_rebalance(consumer: Any, partitions: Any) -> None: + + for p in partitions: + if p.error: + raise KafkaException(p.error) + + print( + f"Kafka partitions rebalanced: {consumer} / {partitions}", + file=sys.stderr, + ) + + def _fail_fast_consume(err: Any, partitions: Any) -> None: + if err is not None: + print("Kafka consumer commit error: {}".format(err), file=sys.stderr) + raise KafkaException(err) + for p in partitions: + # check for partition-specific commit errors + if p.error: + print( + "Kafka consumer commit error: {}".format(p.error), + file=sys.stderr, + ) + raise KafkaException(p.error) + + config = { + "bootstrap.servers": ",".join(kafka_brokers), + "group.id": consumer_group, + "on_commit": _fail_fast_consume, + # messages don't have offset marked as stored until processed, + # but we do auto-commit stored offsets to broker + "enable.auto.offset.store": False, + "enable.auto.commit": True, + # user code timeout; if no poll after this long, assume user code + # hung and rebalance (default: 6min) + "max.poll.interval.ms": 360000, + "default.topic.config": {"auto.offset.reset": "latest",}, + } + + consumer = Consumer(config) + consumer.subscribe( + consume_topics, on_assign=_on_rebalance, on_revoke=_on_rebalance, + ) + print( + f"Consuming from kafka topics {consume_topics}, group {consumer_group}", + file=sys.stderr, + ) + return consumer + + @staticmethod + def create_kafka_producer(kafka_brokers: List[str]) -> Producer: + """ + This configuration is for large compressed messages. + """ + + config = { + "bootstrap.servers": ",".join(kafka_brokers), + "message.max.bytes": 30000000, # ~30 MBytes; broker is ~50 MBytes + "api.version.request": True, + "api.version.fallback.ms": 0, + "compression.codec": "gzip", + "retry.backoff.ms": 250, + "linger.ms": 1000, + "batch.num.messages": 50, + "delivery.report.only.error": True, + "default.topic.config": { + "message.timeout.ms": 30000, + "request.required.acks": -1, # all brokers must confirm + }, + } + return Producer(config) + + def run(self) -> Counter: + + if self.batch_timeout_sec: + signal.signal(signal.SIGALRM, self._timeout_handler) + + while True: + batch = self.consumer.consume( + num_messages=self.batch_size, timeout=self.poll_interval_sec, + ) + + print( + f"... got {len(batch)} kafka messages ({self.poll_interval_sec}sec poll interval). stats: {self.counts}", + file=sys.stderr, + ) + + if not batch: + continue + + # first check errors on entire batch... + for msg in batch: + if msg.error(): + raise KafkaException(msg.error()) + + # ... then process, with optional timeout + self.counts["total"] += len(batch) + records = [json.loads(msg.value().decode("utf-8")) for msg in batch] + + if self.batch_timeout_sec: + signal.alarm(int(self.batch_timeout_sec)) + try: + self.process_batch(records) + except TimeoutError as te: + raise te + finally: + signal.alarm(0) + else: + self.process_batch(records) + + self.counts["processed"] += len(batch) + + # ... then record progress + for msg in batch: + # will be auto-commited by librdkafka from this "stored" value + self.consumer.store_offsets(message=msg) + + # Note: never actually get here, but including as documentation on how to clean up + self.consumer.close() + return self.counts + + def process_batch(self, batch: List[dict]) -> None: + """ + Workers can override this method for batch processing. By default it + calls process_msg() for each message in the batch. + """ + for msg in batch: + self.process_msg(msg) + + def process_msg(self, msg: dict) -> None: + """ + Workers can override this method for individual record processing. + """ + raise NotImplementedError("implementation required") |