aboutsummaryrefslogtreecommitdiffstats
path: root/wttree.scm
blob: 60f25c382a8d4566fff75d569b98294fe50c6572 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
;;; "wttree.scm" Weight balanced trees			-*-Scheme-*-
;;;
;;; $ I d : wttree.scm,v 1.10 1999/01/02 06:19:10 cph Exp $
;;;
;;; Copyright (c) 1993-1999 Massachusetts Institute of Technology
;;;
;;; This program is free software; you can redistribute it and/or modify
;;; it under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 2 of the License, or (at
;;; your option) any later version.
;;;
;;; This program is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;; General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with this program; if not, write to the Free Software
;;; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
;;;
;;; Copyright (c) 1993-1994 Stephen Adams
;;;
;;; References:
;;;
;;;   Stephen Adams, Implemeting Sets Efficiently in a Functional
;;;      Language, CSTR 92-10, Department of Electronics and Computer
;;;      Science, University of Southampton, 1992
;;;
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;;  Weight Balanced Binary Trees
;;
;;
;;
;;  This file has been modified from the MIT-Scheme library version to
;;  make it more standard. The main changes are
;;
;;   . The whole thing has been put in a LET as R4RS Scheme has no module
;;     system.
;;   . The MIT-Scheme define structure operations have been written out by
;;     hand.
;;
;;  It has been tested on MIT-Scheme, scheme48 and scm4e1
;;
;;  If your system has a compiler and you want this code to run fast, you
;;  should do whatever is necessary to inline all of the structure accessors.
;;
;;  This is MIT-Scheme's way of saying that +, car etc should all be inlined.
;;
;;(declare (usual-integrations))

;;;
;;; Interface to this package.
;;;
;;; ONLY these procedures (and TEST at the end of the file) will be
;;; (re)defined in your system.
;;;
;@
(define make-wt-tree-type #f)
(define number-wt-type #f)
(define string-wt-type #f)
;@
(define make-wt-tree #f)
(define singleton-wt-tree #f)
(define alist->wt-tree #f)
(define wt-tree/empty? #f)
(define wt-tree/size #f)
(define wt-tree/add #f)
(define wt-tree/delete #f)
(define wt-tree/add! #f)
(define wt-tree/delete! #f)
(define wt-tree/member? #f)
(define wt-tree/lookup #f)
(define wt-tree/split< #f)
(define wt-tree/split> #f)
(define wt-tree/union #f)
(define wt-tree/union-merge #f)
(define wt-tree/intersection #f)
(define wt-tree/difference #f)
(define wt-tree/subset? #f)
(define wt-tree/set-equal? #f)
(define wt-tree/fold #f)
(define wt-tree/for-each #f)
(define wt-tree/index #f)
(define wt-tree/index-datum #f)
(define wt-tree/index-pair #f)
(define wt-tree/rank #f)
(define wt-tree/min #f)
(define wt-tree/min-datum #f)
(define wt-tree/min-pair #f)
(define wt-tree/delete-min #f)
(define wt-tree/delete-min! #f)
(define wt-tree/valid? #f)

;; This LET sets all of the above variables.

(let ()

  ;; We use the folowing MIT-Scheme operation on fixnums (small
  ;; integers).  R4RS compatible (but less efficient) definitions.
  ;; You should replace these with something that is efficient in your
  ;; system.

  (define fix:fixnum? (lambda (x) (and (exact? x) (integer? x))))
  (define fix:+ +)
  (define fix:- -)
  (define fix:< <)
  (define fix:<= <=)
  (define fix:> >)
  (define fix:* *)

  ;;  A TREE-TYPE is a collection of those procedures that depend on the
  ;;  ordering relation.

  ;; MIT-Scheme structure definition
  ;;(define-structure
  ;;    (tree-type
  ;;     (conc-name tree-type/)
  ;;     (constructor %make-tree-type))
  ;;  (key<?       #F read-only true)
  ;;  (alist->tree #F read-only true)
  ;;  (add         #F read-only true)
  ;;  (insert!     #F read-only true)
  ;;  (delete      #F read-only true)
  ;;  (delete!     #F read-only true)
  ;;  (member?     #F read-only true)
  ;;  (lookup      #F read-only true)
  ;;  (split-lt    #F read-only true)
  ;;  (split-gt    #F read-only true)
  ;;  (union       #F read-only true)
  ;;  (union-merge #F read-only true)
  ;;  (intersection #F read-only true)
  ;;  (difference  #F read-only true)
  ;;  (subset?     #F read-only true)
  ;;  (rank        #F read-only true)
  ;;)

  ;; Written out by hand, using vectors:
  ;;
  ;; If possible, you should teach your system to print out something
  ;; like #[tree-type <] instread of the whole vector.

  (define tag:tree-type (string->symbol "#[(runtime wttree)tree-type]"))

  (define (%make-tree-type key<?       alist->tree
                           add         insert!
                           delete      delete!
                           member?     lookup
                           split-lt    split-gt
                           union       union-merge
                           intersection difference
                           subset?     rank        )
    (vector tag:tree-type
            key<?       alist->tree   add         insert!
            delete      delete!       member?     lookup
            split-lt    split-gt      union       union-merge
            intersection difference   subset?     rank        ))

  (define (tree-type? tt)
    (and (vector? tt)
         (eq? (vector-ref tt 0) tag:tree-type)))

  (define (tree-type/key<?        tt) (vector-ref tt 1))
  (define (tree-type/alist->tree  tt) (vector-ref tt 2))
  (define (tree-type/add          tt) (vector-ref tt 3))
  (define (tree-type/insert!      tt) (vector-ref tt 4))
  (define (tree-type/delete       tt) (vector-ref tt 5))
  (define (tree-type/delete!      tt) (vector-ref tt 6))
  (define (tree-type/member?      tt) (vector-ref tt 7))
  (define (tree-type/lookup       tt) (vector-ref tt 8))
  (define (tree-type/split-lt     tt) (vector-ref tt 9))
  (define (tree-type/split-gt     tt) (vector-ref tt 10))
  (define (tree-type/union        tt) (vector-ref tt 11))
  (define (tree-type/union-merge  tt) (vector-ref tt 12))
  (define (tree-type/intersection tt) (vector-ref tt 13))
  (define (tree-type/difference   tt) (vector-ref tt 14))
  (define (tree-type/subset?      tt) (vector-ref tt 15))
  (define (tree-type/rank         tt) (vector-ref tt 16))

  ;;  User level tree representation.
  ;;
  ;;  WT-TREE is a wrapper for trees of nodes.
  ;;
  ;;MIT-Scheme:
  ;;(define-structure
  ;;    (wt-tree
  ;;     (conc-name tree/)
  ;;     (constructor %make-wt-tree))
  ;;  (type  #F read-only true)
  ;;  (root  #F read-only false))

  ;; If possible, you should teach your system to print out something
  ;; like #[wt-tree] instread of the whole vector.

  (define tag:wt-tree (string->symbol "#[(runtime wttree)wt-tree]"))

  (define (%make-wt-tree type root)
    (vector tag:wt-tree type root))

  (define (wt-tree? t)
    (and (vector? t)
         (eq? (vector-ref t 0) tag:wt-tree)))

  (define (tree/type t) (vector-ref t 1))
  (define (tree/root t) (vector-ref t 2))
  (define (set-tree/root! t v) (vector-set! t 2 v))

  ;;  Nodes are the thing from which the real trees are built.  There are
  ;;  lots of these and the uninquisitibe user will never see them, so
  ;;  they are represented as untagged to save the slot that would be
  ;;  used for tagging structures.
  ;;  In MIT-Scheme these were all DEFINE-INTEGRABLE

  (define (make-node k v l r w) (vector w l k r v))
  (define (node/k node) (vector-ref node 2))
  (define (node/v node) (vector-ref node 4))
  (define (node/l node) (vector-ref node 1))
  (define (node/r node) (vector-ref node 3))
  (define (node/w node) (vector-ref node 0))

  (define empty  'empty)
  (define (empty? x) (eq? x 'empty))

  (define (node/size node)
    (if (empty? node) 0  (node/w node)))

  (define (node/singleton k v) (make-node k v empty empty 1))

  (define (with-n-node node receiver)
    (receiver (node/k node) (node/v node) (node/l node) (node/r node)))

  ;;
  ;;  Constructors for building node trees of various complexity
  ;;

  (define (n-join k v l r)
    (make-node k v l r (fix:+ 1 (fix:+ (node/size l) (node/size r)))))

  (define (single-l a_k a_v x r)
    (with-n-node r
      (lambda (b_k b_v y z) (n-join b_k b_v (n-join a_k a_v x y) z))))

  (define (double-l a_k a_v x r)
    (with-n-node r
      (lambda (c_k c_v r_l z)
        (with-n-node r_l
          (lambda (b_k b_v y1 y2)
            (n-join b_k b_v
                    (n-join a_k a_v x y1)
                    (n-join c_k c_v y2 z)))))))

  (define (single-r b_k b_v l z)
    (with-n-node l
      (lambda (a_k a_v x y) (n-join a_k a_v x (n-join b_k b_v y z)))))

  (define (double-r c_k c_v l z)
    (with-n-node l
      (lambda (a_k a_v x l_r)
        (with-n-node l_r
          (lambda (b_k b_v y1 y2)
            (n-join b_k b_v
                    (n-join a_k a_v x y1)
                    (n-join c_k c_v y2 z)))))))

  ;; (define-integrable wt-tree-delta 3)
  (define wt-tree-delta 3)
  (define wt-tree-gamma 2)

  (define (t-join k v l r)
    (define (simple-join) (n-join k v l r))
    (let ((l_n (fix:+ (node/size l) 1))
          (r_n (fix:+ (node/size r) 1)))
      (cond ((fix:> r_n (fix:* wt-tree-delta l_n))
             ;; right is too big
             (let ((r_l_n (fix:+ (node/size (node/l r)) 1))
                   (r_r_n (fix:+ (node/size (node/r r)) 1)))
               (if (fix:< r_l_n (fix:* wt-tree-gamma r_r_n))
                   (single-l k v l r)
                   (double-l k v l r))))
            ((fix:> l_n (fix:* wt-tree-delta r_n))
             ;; left is too big
             (let ((l_l_n (fix:+ (node/size (node/l l)) 1))
                   (l_r_n (fix:+ (node/size (node/r l)) 1)))
               (if (fix:< l_r_n (fix:* wt-tree-gamma l_l_n))
                   (single-r k v l r)
                   (double-r k v l r))))
            (else
             (simple-join)))))

  ;;
  ;;  Node tree procedures that are independent of key<?
  ;;

  (define (node/min node)
    (cond  ((empty? node)          (error:empty 'min))
           ((empty? (node/l node)) node)
           (else                   (node/min (node/l node)))))

  (define (node/delmin node)
    (cond ((empty? node)           (error:empty 'delmin))
          ((empty? (node/l node))  (node/r node))
          (else   (t-join (node/k node) (node/v node)
                          (node/delmin (node/l node)) (node/r node)))))

  (define (node/concat2 node1 node2)
    (cond ((empty? node1)   node2)
          ((empty? node2)   node1)
          (else
           (let ((min-node (node/min node2)))
             (t-join (node/k min-node) (node/v min-node)
                     node1 (node/delmin node2))))))

  (define (node/inorder-fold procedure base node)
    (define (fold base node)
      (if (empty? node)
          base
          (with-n-node node
            (lambda (k v l r)
              (fold (procedure k v (fold base r)) l)))))
    (fold base node))

  (define (node/for-each procedure node)
    (if (not (empty? node))
        (with-n-node node
          (lambda (k v l r)
            (node/for-each procedure l)
            (procedure k v)
            (node/for-each procedure r)))))

  (define (node/height node)
    (if (empty? node)
        0
        (+ 1 (max (node/height (node/l node))
                  (node/height (node/r node))))))

  (define (node/index node index)
    (define (loop node index)
      (let ((size_l  (node/size (node/l node))))
        (cond ((fix:< index size_l)  (loop (node/l node) index))
              ((fix:> index size_l)  (loop (node/r node)
                                           (fix:- index (fix:+ 1 size_l))))
              (else                  node))))
    (let ((bound  (node/size node)))
      (if (or (< index 0)
              (>= index bound)
              (not (fix:fixnum? index)))
          (slib:error 'bad-range-argument index 'node/index)
          (loop node index))))

  (define (error:empty owner)
    (slib:error "Operation requires non-empty tree:" owner))


  (define (local:make-wt-tree-type key<?)

    ;; MIT-Scheme definitions:
    ;;(declare (integrate key<?))
    ;;(define-integrable (key>? x y)  (key<? y x))

    (define (key>? x y)  (key<? y x))

    (define (node/find k node)
      ;; Returns either the node or #f.
      ;; Loop takes D comparisons where D is the depth of the tree
      ;; rather than the traditional compare-low, compare-high which
      ;; takes on average 1.5(D-1) comparisons
      (define (loop this best)
        (cond ((empty? this)  best)
              ((key<? k (node/k this))   (loop (node/l this) best))
              (else (loop (node/r this) this))))
      (let ((best (loop node #f)))
        (cond ((not best)               #f)
              ((key<? (node/k best) k)  #f)
              (else                     best))))

    (define (node/rank k node rank)
      (cond ((empty? node)             #f)
            ((key<? k (node/k node))  (node/rank k (node/l node) rank))
            ((key>? k (node/k node))
             (node/rank k (node/r node)
                        (fix:+ 1 (fix:+ rank (node/size (node/l node))))))
            (else                     (fix:+ rank (node/size (node/l node))))))

    (define (node/add node k v)
      (if (empty? node)
          (node/singleton k v)
          (with-n-node node
            (lambda (key val l r)
              (cond ((key<? k key)   (t-join key val (node/add l k v) r))
                    ((key<? key k)   (t-join key val l (node/add r k v)))
                    (else            (n-join key v   l r)))))))

    (define (node/delete x node)
      (if (empty? node)
          empty
          (with-n-node node
            (lambda (key val l r)
              (cond ((key<? x key)   (t-join key val (node/delete x l) r))
                    ((key<? key x)   (t-join key val l (node/delete x r)))
                    (else            (node/concat2 l r)))))))

    (define (node/concat tree1 tree2)
      (cond ((empty? tree1)  tree2)
            ((empty? tree2)  tree1)
            (else
             (let ((min-node (node/min tree2)))
               (node/concat3 (node/k min-node) (node/v min-node) tree1
                             (node/delmin tree2))))))

    (define (node/concat3 k v l r)
      (cond ((empty? l) (node/add r k v))
            ((empty? r) (node/add l k v))
            (else
             (let ((n1 (fix:+ (node/size l) 1))
                   (n2 (fix:+ (node/size r) 1)))
               (cond ((fix:< (fix:* wt-tree-delta n1) n2)
                      (with-n-node r
                        (lambda (k2 v2 l2 r2)
                          (t-join k2 v2 (node/concat3 k v l l2) r2))))
                     ((fix:< (fix:* wt-tree-delta n2) n1)
                      (with-n-node l
                        (lambda (k1 v1 l1 r1)
                          (t-join k1 v1 l1 (node/concat3 k v r1 r)))))
                     (else
                      (n-join k v l r)))))))

    (define (node/split-lt node x)
      (cond ((empty? node)  empty)
            ((key<? x (node/k node))
             (node/split-lt (node/l node) x))
            ((key<? (node/k node) x)
             (node/concat3 (node/k node) (node/v node) (node/l node)
                           (node/split-lt (node/r node) x)))
            (else (node/l node))))

    (define (node/split-gt node x)
      (cond ((empty? node)  empty)
            ((key<? (node/k node) x)
             (node/split-gt (node/r node) x))
            ((key<? x (node/k node))
             (node/concat3 (node/k node) (node/v node)
                           (node/split-gt (node/l node) x) (node/r node)))
            (else (node/r node))))

    (define (node/union tree1 tree2)
      (cond ((empty? tree1)  tree2)
            ((empty? tree2)  tree1)
            (else
             (with-n-node tree2
               (lambda (ak av l r)
                 (let ((l1  (node/split-lt tree1 ak))
                       (r1  (node/split-gt tree1 ak)))
                   (node/concat3 ak av (node/union l1 l) (node/union r1 r))))))))

    (define (node/union-merge tree1 tree2 merge)
      (cond ((empty? tree1)  tree2)
            ((empty? tree2)  tree1)
            (else
             (with-n-node tree2
               (lambda (ak av l r)
                 (let* ((node1  (node/find ak tree1))
                        (l1     (node/split-lt tree1 ak))
                        (r1     (node/split-gt tree1 ak))
                        (value  (if node1
				  (merge ak av (node/v node1))
				  av)))
                   (node/concat3 ak value
                                 (node/union-merge l1 l merge)
                                 (node/union-merge r1 r merge))))))))

    (define (node/difference tree1 tree2)
      (cond ((empty? tree1)   empty)
            ((empty? tree2)   tree1)
            (else
             (with-n-node tree2
               (lambda (ak av l r)
                 (let ((l1  (node/split-lt tree1 ak))
                       (r1  (node/split-gt tree1 ak)))
                   av
                   (node/concat (node/difference l1 l)
                                (node/difference r1 r))))))))

    (define (node/intersection tree1 tree2)
      (cond ((empty? tree1)   empty)
            ((empty? tree2)   empty)
            (else
             (with-n-node tree2
               (lambda (ak av l r)
                 (let ((l1  (node/split-lt tree1 ak))
                       (r1  (node/split-gt tree1 ak)))
                   (if (node/find ak tree1)
                       (node/concat3 ak av (node/intersection l1 l)
                                     (node/intersection r1 r))
                       (node/concat (node/intersection l1 l)
                                    (node/intersection r1 r)))))))))

    (define (node/subset? tree1 tree2)
      (or (empty? tree1)
          (and (fix:<= (node/size tree1) (node/size tree2))
               (with-n-node tree1
                 (lambda (k v l r)
                   v
                   (cond ((key<? k (node/k tree2))
                          (and (node/subset? l (node/l tree2))
                               (node/find k tree2)
                               (node/subset? r tree2)))
                         ((key>? k (node/k tree2))
                          (and (node/subset? r (node/r tree2))
                               (node/find k tree2)
                               (node/subset? l tree2)))
                         (else
                          (and (node/subset? l (node/l tree2))
                               (node/subset? r (node/r tree2))))))))))


    ;;; Tree interface: stripping off or injecting the tree types

    (define (tree/map-add tree k v)
      (%make-wt-tree (tree/type tree)
                     (node/add (tree/root tree) k v)))

    (define (tree/insert! tree k v)
      (set-tree/root! tree (node/add (tree/root tree) k v)))

    (define (tree/delete tree k)
      (%make-wt-tree (tree/type tree)
                     (node/delete k (tree/root tree))))

    (define (tree/delete! tree k)
      (set-tree/root! tree (node/delete k (tree/root tree))))

    (define (tree/split-lt tree key)
      (%make-wt-tree (tree/type tree)
                     (node/split-lt (tree/root tree) key)))

    (define (tree/split-gt tree key)
      (%make-wt-tree (tree/type tree)
                     (node/split-gt (tree/root tree) key)))

    (define (tree/union tree1 tree2)
      (%make-wt-tree (tree/type tree1)
                     (node/union (tree/root tree1) (tree/root tree2))))

    (define (tree/union-merge tree1 tree2 merge)
      (%make-wt-tree (tree/type tree1)
                     (node/union-merge (tree/root tree1) (tree/root tree2)
                                       merge)))

    (define (tree/intersection tree1 tree2)
      (%make-wt-tree (tree/type tree1)
                     (node/intersection (tree/root tree1) (tree/root tree2))))

    (define (tree/difference tree1 tree2)
      (%make-wt-tree (tree/type tree1)
                     (node/difference (tree/root tree1) (tree/root tree2))))

    (define (tree/subset? tree1 tree2)
      (node/subset? (tree/root tree1) (tree/root tree2)))

    (define (alist->tree alist)
      (define (loop alist node)
        (cond ((null? alist)  node)
              ((pair? alist)  (loop (cdr alist)
                                    (node/add node (caar alist) (cdar alist))))
              (else
               (slib:error 'wrong-type-argument alist "alist" 'alist->tree))))
      (%make-wt-tree my-type (loop alist empty)))

    (define (tree/get tree key default)
      (let ((node  (node/find key (tree/root tree))))
        (if node
            (node/v node)
            default)))

    (define (tree/rank tree key)  (node/rank key (tree/root tree) 0))

    (define (tree/member? key tree)
      (and (node/find key (tree/root tree))
           #t))

    (define my-type #F)

    (set! my-type
          (%make-tree-type
           key<?                        ;  key<?
           alist->tree                  ;  alist->tree
           tree/map-add                 ;  add
           tree/insert!                 ;  insert!
           tree/delete                  ;  delete
           tree/delete!                 ;  delete!
           tree/member?                 ;  member?
           tree/get                     ;  lookup
           tree/split-lt                ;  split-lt
           tree/split-gt                ;  split-gt
           tree/union                   ;  union
           tree/union-merge             ;  union-merge
           tree/intersection            ;  intersection
           tree/difference              ;  difference
           tree/subset?                 ;  subset?
           tree/rank                    ;  rank
           ))

    my-type)

  (define (guarantee-tree tree procedure)
    (if (not (wt-tree? tree))
        (slib:error 'wrong-type-argument
		    tree "weight-balanced tree" procedure)))

  (define (guarantee-tree-type type procedure)
    (if (not (tree-type? type))
        (slib:error 'wrong-type-argument
		    type "weight-balanced tree type" procedure)))

  (define (guarantee-compatible-trees tree1 tree2 procedure)
    (guarantee-tree tree1 procedure)
    (guarantee-tree tree2 procedure)
    (if (not (eq? (tree/type tree1) (tree/type tree2)))
        (slib:error "The trees" tree1 'and tree2 'have 'incompatible 'types
		    (tree/type tree1) 'and (tree/type tree2))))

  (define (valid? tree)
    (let ((root (tree/root tree)))
      (and (balanced? root)
	   (ordered? root))))

  (define (balanced? n)
    (define (isBalanced a b)
      (let ((x (fix:+ (node/size a) 1))
	    (y (fix:+ (node/size b) 1)))
	(fix:<= y (fix:* wt-tree-delta x))))
    (or (empty? n)
	(let ((l (node/l n))
	      (r (node/r n)))
	  (and (isBalanced l r) (isBalanced r l)
	       (balanced? l) (balanced? r)))))

  (define (ordered? n)
    (define (isOrdered lo hi m)
      (or (empty? m)
	  (let ((k (node/k m))
		(l (node/l m))
		(r (node/r m)))
	    (and (lo k) (hi k)
		 (isOrdered lo (lambda (x) (< x k)) l)
		 (isOrdered (lambda (x) (< k x)) hi r)))))
    (isOrdered (lambda (x) #t) (lambda (x) #t) n))

;;;______________________________________________________________________
;;;
;;;  Export interface
;;;
  (set! make-wt-tree-type local:make-wt-tree-type)

  (set! make-wt-tree
        (lambda (tree-type)
          (%make-wt-tree tree-type empty)))

  (set! singleton-wt-tree
        (lambda (type key value)
          (guarantee-tree-type type 'singleton-wt-tree)
          (%make-wt-tree type (node/singleton key value))))

  (set! alist->wt-tree
        (lambda (type alist)
          (guarantee-tree-type type 'alist->wt-tree)
          ((tree-type/alist->tree type) alist)))

  (set! wt-tree/empty?
        (lambda (tree)
          (guarantee-tree tree 'wt-tree/empty?)
          (empty? (tree/root tree))))

  (set! wt-tree/size
        (lambda (tree)
          (guarantee-tree tree 'wt-tree/size)
          (node/size (tree/root tree))))

  (set! wt-tree/add
        (lambda (tree key datum)
          (guarantee-tree tree 'wt-tree/add)
          ((tree-type/add (tree/type tree)) tree key datum)))

  (set! wt-tree/delete
        (lambda (tree key)
          (guarantee-tree tree 'wt-tree/delete)
          ((tree-type/delete (tree/type tree)) tree key)))

  (set! wt-tree/add!
        (lambda (tree key datum)
          (guarantee-tree tree 'wt-tree/add!)
          ((tree-type/insert! (tree/type tree)) tree key datum)))

  (set! wt-tree/delete!
        (lambda (tree key)
          (guarantee-tree tree 'wt-tree/delete!)
          ((tree-type/delete! (tree/type tree)) tree key)))

  (set! wt-tree/member?
        (lambda (key tree)
          (guarantee-tree tree 'wt-tree/member?)
          ((tree-type/member? (tree/type tree)) key tree)))

  (set! wt-tree/lookup
        (lambda (tree key default)
          (guarantee-tree tree 'wt-tree/lookup)
          ((tree-type/lookup (tree/type tree)) tree key default)))

  (set! wt-tree/split<
        (lambda (tree key)
          (guarantee-tree tree 'wt-tree/split<)
          ((tree-type/split-lt (tree/type tree)) tree key)))

  (set! wt-tree/split>
        (lambda (tree key)
          (guarantee-tree tree 'wt-tree/split>)
          ((tree-type/split-gt (tree/type tree)) tree key)))

  (set! wt-tree/union
        (lambda (tree1 tree2)
          (guarantee-compatible-trees tree1 tree2 'wt-tree/union)
          ((tree-type/union (tree/type tree1)) tree1 tree2)))

  (set! wt-tree/union-merge
        (lambda (tree1 tree2 merge)
          (guarantee-compatible-trees tree1 tree2 'wt-tree/union-merge)
          ((tree-type/union-merge (tree/type tree1)) tree1 tree2 merge)))

  (set! wt-tree/intersection
        (lambda (tree1 tree2)
          (guarantee-compatible-trees tree1 tree2 'wt-tree/intersection)
          ((tree-type/intersection (tree/type tree1)) tree1 tree2)))

  (set! wt-tree/difference
        (lambda (tree1 tree2)
          (guarantee-compatible-trees tree1 tree2 'wt-tree/difference)
          ((tree-type/difference (tree/type tree1)) tree1 tree2)))

  (set! wt-tree/subset?
        (lambda (tree1 tree2)
          (guarantee-compatible-trees tree1 tree2 'wt-tree/subset?)
          ((tree-type/subset? (tree/type tree1)) tree1 tree2)))

  (set! wt-tree/set-equal?
        (lambda (tree1 tree2)
          (and (wt-tree/subset? tree1 tree2)
               (wt-tree/subset? tree2 tree1))))

  (set! wt-tree/fold
        (lambda (combiner-key-datum-result init tree)
          (guarantee-tree tree 'wt-tree/fold)
          (node/inorder-fold combiner-key-datum-result
                             init
                             (tree/root tree))))

  (set! wt-tree/for-each
        (lambda (action-key-datum tree)
          (guarantee-tree tree 'wt-tree/for-each)
          (node/for-each action-key-datum (tree/root tree))))

  (set! wt-tree/index
        (lambda (tree index)
          (guarantee-tree tree 'wt-tree/index)
          (let ((node  (node/index (tree/root tree) index)))
            (and node (node/k node)))))

  (set! wt-tree/index-datum
        (lambda (tree index)
          (guarantee-tree tree 'wt-tree/index-datum)
          (let ((node  (node/index (tree/root tree) index)))
            (and node (node/v node)))))

  (set! wt-tree/index-pair
        (lambda (tree index)
          (guarantee-tree tree 'wt-tree/index-pair)
          (let ((node  (node/index (tree/root tree) index)))
            (and node (cons (node/k node) (node/v node))))))

  (set! wt-tree/rank
        (lambda (tree key)
          (guarantee-tree tree 'wt-tree/rank)
          ((tree-type/rank (tree/type tree)) tree key)))

  (set! wt-tree/min
        (lambda (tree)
          (guarantee-tree tree 'wt-tree/min)
          (node/k (node/min (tree/root tree)))))

  (set! wt-tree/min-datum
        (lambda (tree)
          (guarantee-tree tree 'wt-tree/min-datum)
          (node/v (node/min (tree/root tree)))))

  (set! wt-tree/min-pair
        (lambda (tree)
          (guarantee-tree tree 'wt-tree/min-pair)
          (let ((node  (node/min (tree/root tree))))
            (cons (node/k node) (node/v node)))))

  (set! wt-tree/delete-min
        (lambda (tree)
          (guarantee-tree tree 'wt-tree/delete-min)
          (%make-wt-tree (tree/type tree)
                         (node/delmin (tree/root tree)))))

  (set! wt-tree/delete-min!
        (lambda (tree)
          (guarantee-tree tree 'wt-tree/delete-min!)
          (set-tree/root! tree (node/delmin (tree/root tree)))))

  ;; < is a lexpr. Many compilers can open-code < so the lambda is faster
  ;; than passing <.
  (set! number-wt-type (local:make-wt-tree-type  (lambda (u v) (< u v))))
  (set! string-wt-type (local:make-wt-tree-type  string<?))

  (set! wt-tree/valid?
        (lambda (tree)
          (guarantee-tree tree 'wt-tree/valid?)
          (valid? tree)))

  'done)

;;; Local Variables:
;;; eval: (put 'with-n-node 'scheme-indent-function 1)
;;; eval: (put 'with-n-node 'scheme-indent-hook 1)
;;; End: