aboutsummaryrefslogtreecommitdiffstats
path: root/tsort.scm
blob: 9db98f2957548fb1831e8923424c08a2f7692503 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
;;; "tsort.scm" Topological sort
;;; Copyright (C) 1995 Mikael Djurfeldt
;;; This code is in the public domain.

;;; The algorithm is inspired by Cormen, Leiserson and Rivest (1990)
;;; "Introduction to Algorithms", chapter 23

(require 'hash-table)
(require 'primes)

;;@code{(require 'topological-sort)} or @code{(require 'tsort)}
;;@ftindex topological-sort
;;@ftindex tsort

;;@noindent
;;The algorithm is inspired by Cormen, Leiserson and Rivest (1990)
;;@cite{Introduction to Algorithms}, chapter 23.

;;@body
;;@defunx topological-sort dag pred
;;where
;;@table @var
;;@item dag
;;is a list of sublists.  The car of each sublist is a vertex.  The cdr is
;;the adjacency list of that vertex, i.e. a list of all vertices to which
;;there exists an edge from the car vertex.
;;@item pred
;;is one of @code{eq?}, @code{eqv?}, @code{equal?}, @code{=},
;;@code{char=?}, @code{char-ci=?}, @code{string=?}, or @code{string-ci=?}.
;;@end table
;;
;;Sort the directed acyclic graph @1 so that for every edge from
;;vertex @var{u} to @var{v}, @var{u} will come before @var{v} in the
;;resulting list of vertices.
;;
;;Time complexity: O (|V| + |E|)
;;
;;Example (from Cormen):
;;@quotation
;;Prof. Bumstead topologically sorts his clothing when getting
;;dressed.  The first argument to @0 describes which
;;garments he needs to put on before others.  (For example,
;;Prof Bumstead needs to put on his shirt before he puts on his
;;tie or his belt.)  @0 gives the correct order of dressing:
;;@end quotation
;;
;;@example
;;(require 'tsort)
;;@ftindex tsort
;;(tsort '((shirt tie belt)
;;         (tie jacket)
;;         (belt jacket)
;;         (watch)
;;         (pants shoes belt)
;;         (undershorts pants shoes)
;;         (socks shoes))
;;       eq?)
;;@result{}
;;(socks undershorts pants shoes watch shirt belt tie jacket)
;;@end example
(define (tsort dag pred)
  (if (null? dag)
      '()
      (let* ((adj-table (make-hash-table
			 (car (primes> (length dag) 1))))
	     (insert (hash-associator pred))
	     (lookup (hash-inquirer pred))
	     (sorted '()))
	(letrec ((visit
		  (lambda (u adj-list)
		    ;; Color vertex u
		    (insert adj-table u 'colored)
		    ;; Visit uncolored vertices which u connects to
		    (for-each (lambda (v)
				(let ((val (lookup adj-table v)))
				  (if (not (eq? val 'colored))
				      (visit v (or val '())))))
			      adj-list)
		    ;; Since all vertices downstream u are visited
		    ;; by now, we can safely put u on the output list
		    (set! sorted (cons u sorted)))))
	  ;; Hash adjacency lists
	  (for-each (lambda (def)
		      (insert adj-table (car def) (cdr def)))
		    (cdr dag))
	  ;; Visit vertices
	  (visit (caar dag) (cdar dag))
	  (for-each (lambda (def)
		      (let ((val (lookup adj-table (car def))))
			(if (not (eq? val 'colored))
			    (visit (car def) (cdr def)))))
		    (cdr dag)))
	sorted)))
(define topological-sort tsort)