aboutsummaryrefslogtreecommitdiffstats
path: root/slib.info-5
blob: 04d1b28c417bc0d7d10ffa0e2e179c6229d79698 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
This is Info file slib.info, produced by Makeinfo-1.64 from the input
file slib.texi.

  This file documents SLIB, the portable Scheme library.

  Copyright (C) 1993 Todd R. Eigenschink Copyright (C) 1993, 1994, 1995
Aubrey Jaffer

  Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

  Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

  Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a
translation approved by the author.


File: slib.info,  Node: Cyclic Checksum,  Next: Plotting,  Prev: Random Numbers,  Up: Numerics

Cyclic Checksum
===============

  `(require 'make-crc)'

 - Function: make-port-crc
 - Function: make-port-crc DEGREE
 - Function: make-port-crc DEGREE GENERATOR
     Returns an expression for a procedure of one argument, a port.
     This procedure reads characters from the port until the end of
     file and returns the integer checksum of the bytes read.

     The integer DEGREE, if given, specifies the degree of the
     polynomial being computed - which is also the number of bits
     computed in the checksums.  The default value is 32.

     The integer GENERATOR specifies the polynomial being computed.
     The power of 2 generating each 1 bit is the exponent of a term of
     the polynomial.  The bit at position DEGREE is implicit and should
     not be part of GENERATOR.  This allows systems with numbers
     limited to 32 bits to calculate 32 bit checksums.  The default
     value of GENERATOR when DEGREE is 32 (its default) is:

          (make-port-crc 32 #b00000100110000010001110110110111)

     Creates a procedure to calculate the P1003.2/D11.2 (POSIX.2) 32-bit
     checksum from the polynomial:

               32    26    23    22    16    12    11
            ( x   + x   + x   + x   + x   + x   + x   +
          
                10    8    7    5    4    2    1
               x   + x  + x  + x  + x  + x  + x  + 1 )  mod 2

     (require 'make-crc)
     (define crc32 (slib:eval (make-port-crc)))
     (define (file-check-sum file) (call-with-input-file file crc32))
     (file-check-sum (in-vicinity (library-vicinity) "ratize.scm"))
     
     => 3553047446


File: slib.info,  Node: Plotting,  Next: Root Finding,  Prev: Cyclic Checksum,  Up: Numerics

Plotting on Character Devices
=============================

  `(require 'charplot)'

  The plotting procedure is made available through the use of the
`charplot' package.  `charplot' is loaded by inserting `(require
'charplot)' before the code that uses this procedure.

 - Variable: charplot:height
     The number of rows to make the plot vertically.

 - Variable: charplot:width
     The number of columns to make the plot horizontally.

 - Procedure: plot! COORDS X-LABEL Y-LABEL
     COORDS is a list of pairs of x and y coordinates.  X-LABEL and
     Y-LABEL are strings with which to label the x and y axes.

     Example:
          (require 'charplot)
          (set! charplot:height 19)
          (set! charplot:width 45)
          
          (define (make-points n)
            (if (zero? n)
                '()
                (cons (cons (/ n 6) (sin (/ n 6))) (make-points (1- n)))))
          
          (plot! (make-points 37) "x" "Sin(x)")
          -|
            Sin(x)   ______________________________________________
                1.25|-                                             |
                    |                                              |
                   1|-       ****                                  |
                    |      **    **                                |
            750.0e-3|-    *        *                               |
                    |    *          *                              |
            500.0e-3|-  *            *                             |
                    |  *                                           |
            250.0e-3|-                *                            |
                    | *                *                           |
                   0|-------------------*--------------------------|
                    |                                     *        |
           -250.0e-3|-                   *               *         |
                    |                     *             *          |
           -500.0e-3|-                     *                       |
                    |                       *          *           |
           -750.0e-3|-                       *        *            |
                    |                         **    **             |
                  -1|-                          ****               |
                    |____________:_____._____:_____._____:_________|
                  x              2           4


File: slib.info,  Node: Root Finding,  Prev: Plotting,  Up: Numerics

Root Finding
============

  `(require 'root)'

 - Function: newtown:find-integer-root F DF/DX X0
     Given integer valued procedure F, its derivative (with respect to
     its argument) DF/DX, and initial integer value X0 for which
     DF/DX(X0) is non-zero, returns an integer X for which F(X) is
     closer to zero than either of the integers adjacent to X; or
     returns `#f' if such an integer can't be found.

     To find the closest integer to a given integers square root:

          (define (integer-sqrt y)
            (newton:find-integer-root
             (lambda (x) (- (* x x) y))
             (lambda (x) (* 2 x))
             (ash 1 (quotient (integer-length y) 2))))
          
          (integer-sqrt 15) => 4

 - Function: integer-sqrt Y
     Given a non-negative integer Y, returns the rounded square-root of
     Y.

 - Function: newton:find-root F DF/DX X0 PREC
     Given real valued procedures F, DF/DX of one (real) argument,
     initial real value X0 for which DF/DX(X0) is non-zero, and
     positive real number PREC, returns a real X for which `abs'(F(X))
     is less than PREC; or returns `#f' if such a real can't be found.

     If `prec' is instead a negative integer, `newton:find-root'
     returns the result of -PREC iterations.

H. J. Orchard, `The Laguerre Method for Finding the Zeros of
Polynomials', IEEE Transactions on Circuits and Systems, Vol. 36, No.
11, November 1989, pp 1377-1381.

     There are 2 errors in Orchard's Table II.  Line k=2 for starting
     value of 1000+j0 should have Z_k of 1.0475 + j4.1036 and line k=2
     for starting value of 0+j1000 should have Z_k of 1.0988 + j4.0833.

 - Function: laguerre:find-root F DF/DZ DDF/DZ^2 Z0 PREC
     Given complex valued procedure F of one (complex) argument, its
     derivative (with respect to its argument) DF/DX, its second
     derivative DDF/DZ^2, initial complex value Z0, and positive real
     number PREC, returns a complex number Z for which
     `magnitude'(F(Z)) is less than PREC; or returns `#f' if such a
     number can't be found.

     If `prec' is instead a negative integer, `laguerre:find-root'
     returns the result of -PREC iterations.

 - Function: laguerre:find-polynomial-root DEG F DF/DZ DDF/DZ^2 Z0 PREC
     Given polynomial procedure F of integer degree DEG of one
     argument, its derivative (with respect to its argument) DF/DX, its
     second derivative DDF/DZ^2, initial complex value Z0, and positive
     real number PREC, returns a complex number Z for which
     `magnitude'(F(Z)) is less than PREC; or returns `#f' if such a
     number can't be found.

     If `prec' is instead a negative integer,
     `laguerre:find-polynomial-root' returns the result of -PREC
     iterations.


File: slib.info,  Node: Procedures,  Next: Standards Support,  Prev: Numerics,  Up: Top

Procedures
**********

  Anything that doesn't fall neatly into any of the other categories
winds up here.

* Menu:

* Batch::                       'batch
* Common List Functions::       'common-list-functions
* Format::                      'format
* Generic-Write::               'generic-write
* Line I/O::                    'line-i/o
* Multi-Processing::            'process
* Object-To-String::            'object->string
* Pretty-Print::                'pretty-print, 'pprint-file
* Sorting::                     'sort
* Topological Sort::
* Standard Formatted I/O::      'printf, 'scanf
* String-Case::                 'string-case
* String Ports::                'string-port
* String Search::
* Tektronix Graphics Support::
* Tree Operations::             'tree


File: slib.info,  Node: Batch,  Next: Common List Functions,  Prev: Procedures,  Up: Procedures

Batch
=====

  `(require 'batch)'

The batch procedures provide a way to write and execute portable scripts
for a variety of operating systems.  Each `batch:' procedure takes as
its first argument a parameter-list (*note Parameter lists::.).  This
parameter-list argument PARMS contains named associations.  Batch
currently uses 2 of these:

`batch-port'
     The port on which to write lines of the batch file.

`batch-dialect'
     The syntax of batch file to generate.  Currently supported are:
        * unix

        * dos

        * vms

        * system

        * *unknown*

`batch.scm' uses 2 enhanced relational tables (*note Database
Utilities::.) to store information linking the names of
`operating-system's to `batch-dialect'es.

 - Function: batch:initialize! DATABASE
     Defines `operating-system' and `batch-dialect' tables and adds the
     domain `operating-system' to the enhanced relational database
     DATABASE.

 - Variable: batch:platform
     Is batch's best guess as to which operating-system it is running
     under.  `batch:platform' is set to `(software-type)' (*note
     Configuration::.) unless `(software-type)' is `unix', in which
     case finer distinctions are made.

 - Function: batch:call-with-output-script PARMS FILE PROC
     PROC should be a procedure of one argument.  If FILE is an
     output-port, `batch:call-with-output-script' writes an appropriate
     header to FILE and then calls PROC with FILE as the only argument.
     If FILE is a string, `batch:call-with-output-script' opens a
     output-file of name FILE, writes an appropriate header to FILE,
     and then calls PROC with the newly opened port as the only
     argument.  Otherwise, `batch:call-with-output-script' acts as if
     it was called with the result of `(current-output-port)' as its
     third argument.

 - Function: batch:apply-chop-to-fit PROC ARG1 ARG2 ... LIST
     The procedure PROC must accept at least one argument and return
     `#t' if successful, `#f' if not.  `batch:apply-chop-to-fit' calls
     PROC with ARG1, ARG2, ..., and CHUNK, where CHUNK is a subset of
     LIST.  `batch:apply-chop-to-fit' tries PROC with successively
     smaller subsets of LIST until either PROC returns non-false, or
     the CHUNKs become empty.

The rest of the `batch:' procedures write (or execute if
`batch-dialect' is `system') commands to the batch port which has been
added to PARMS or `(copy-tree PARMS)' by the code:

     (adjoin-parameters! PARMS (list 'batch-port PORT))

 - Function: batch:system PARMS STRING1 STRING2 ...
     Calls `batch:try-system' (below) with arguments, but signals an
     error if `batch:try-system' returns `#f'.

These functions return a non-false value if the command was successfully
translated into the batch dialect and `#f' if not.  In the case of the
`system' dialect, the value is non-false if the operation suceeded.

 - Function: batch:try-system PARMS STRING1 STRING2 ...
     Writes a command to the `batch-port' in PARMS which executes the
     program named STRING1 with arguments STRING2 ....

 - Function: batch:run-script PARMS STRING1 STRING2 ...
     Writes a command to the `batch-port' in PARMS which executes the
     batch script named STRING1 with arguments STRING2 ....

     *Note:* `batch:run-script' and `batch:try-system' are not the same
     for some operating systems (VMS).

 - Function: batch:comment PARMS LINE1 ...
     Writes comment lines LINE1 ... to the `batch-port' in PARMS.

 - Function: batch:lines->file PARMS FILE LINE1 ...
     Writes commands to the `batch-port' in PARMS which create a file
     named FILE with contents LINE1 ....

 - Function: batch:delete-file PARMS FILE
     Writes a command to the `batch-port' in PARMS which deletes the
     file named FILE.

 - Function: batch:rename-file PARMS OLD-NAME NEW-NAME
     Writes a command to the `batch-port' in PARMS which renames the
     file OLD-NAME to NEW-NAME.

In addition, batch provides some small utilities very useful for writing
scripts:

 - Function: replace-suffix STR OLD NEW
     Returns a new string similar to `str' but with the suffix string
     OLD removed and the suffix string NEW appended.  If the end of STR
     does not match OLD, an error is signaled.

 - Function: string-join JOINER STRING1 ...
     Returns a new string consisting of all the strings STRING1 ...  in
     order appended together with the string JOINER between each
     adjacent pair.

 - Function: must-be-first LIST1 LIST2
     Returns a new list consisting of the elements of LIST2 ordered so
     that if some elements of LIST1 are `equal?' to elements of LIST2,
     then those elements will appear first and in the order of LIST1.

 - Function: must-be-last LIST1 LIST2
     Returns a new list consisting of the elements of LIST1 ordered so
     that if some elements of LIST2 are `equal?' to elements of LIST1,
     then those elements will appear last and in the order of LIST2.

 - Function: os->batch-dialect OSNAME
     Returns its best guess for the `batch-dialect' to be used for the
     operating-system named OSNAME.  `os->batch-dialect' uses the
     tables added to DATABASE by `batch:initialize!'.

Here is an example of the use of most of batch's procedures:

     (require 'database-utilities)
     (require 'parameters)
     (require 'batch)
     
     (define batch (create-database #f 'alist-table))
     (batch:initialize! batch)
     
     (define my-parameters
       (list (list 'batch-dialect (os->batch-dialect batch:platform))
             (list 'platform batch:platform)
             (list 'batch-port (current-output-port)))) ;gets filled in later
     
     (batch:call-with-output-script
      my-parameters
      "my-batch"
      (lambda (batch-port)
        (adjoin-parameters! my-parameters (list 'batch-port batch-port))
        (and
         (batch:comment my-parameters
                        "================ Write file with C program.")
         (batch:rename-file my-parameters "hello.c" "hello.c~")
         (batch:lines->file my-parameters "hello.c"
                            "#include <stdio.h>"
                            "int main(int argc, char **argv)"
                            "{"
                            "  printf(\"hello world\\n\");"
                            "  return 0;"
                            "}" )
         (batch:system my-parameters "cc" "-c" "hello.c")
         (batch:system my-parameters "cc" "-o" "hello"
                       (replace-suffix "hello.c" ".c" ".o"))
         (batch:system my-parameters "hello")
         (batch:delete-file my-parameters "hello")
         (batch:delete-file my-parameters "hello.c")
         (batch:delete-file my-parameters "hello.o")
         (batch:delete-file my-parameters "my-batch")
         )))

Produces the file `my-batch':

     #!/bin/sh
     # "my-batch" build script created Sat Jun 10 21:20:37 1995
     # ================ Write file with C program.
     mv -f hello.c hello.c~
     rm -f hello.c
     echo '#include <stdio.h>'>>hello.c
     echo 'int main(int argc, char **argv)'>>hello.c
     echo '{'>>hello.c
     echo '  printf("hello world\n");'>>hello.c
     echo '  return 0;'>>hello.c
     echo '}'>>hello.c
     cc -c hello.c
     cc -o hello hello.o
     hello
     rm -f hello
     rm -f hello.c
     rm -f hello.o
     rm -f my-batch

When run, `my-batch' prints:

     bash$ my-batch
     mv: hello.c: No such file or directory
     hello world


File: slib.info,  Node: Common List Functions,  Next: Format,  Prev: Batch,  Up: Procedures

Common List Functions
=====================

  `(require 'common-list-functions)'

  The procedures below follow the Common LISP equivalents apart from
optional arguments in some cases.

* Menu:

* List construction::
* Lists as sets::
* Lists as sequences::
* Destructive list operations::
* Non-List functions::


File: slib.info,  Node: List construction,  Next: Lists as sets,  Prev: Common List Functions,  Up: Common List Functions

List construction
-----------------

 - Function: make-list K . INIT
     `make-list' creates and returns a list of K elements.  If INIT is
     included, all elements in the list are initialized to INIT.

     Example:
          (make-list 3)
             => (#<unspecified> #<unspecified> #<unspecified>)
          (make-list 5 'foo)
             => (foo foo foo foo foo)

 - Function: list* X . Y
     Works like `list' except that the cdr of the last pair is the last
     argument unless there is only one argument, when the result is
     just that argument.  Sometimes called `cons*'.  E.g.:
          (list* 1)
             => 1
          (list* 1 2 3)
             => (1 2 . 3)
          (list* 1 2 '(3 4))
             => (1 2 3 4)
          (list* ARGS '())
             == (list ARGS)

 - Function: copy-list LST
     `copy-list' makes a copy of LST using new pairs and returns it.
     Only the top level of the list is copied, i.e., pairs forming
     elements of the copied list remain `eq?' to the corresponding
     elements of the original; the copy is, however, not `eq?' to the
     original, but is `equal?' to it.

     Example:
          (copy-list '(foo foo foo))
             => (foo foo foo)
          (define q '(foo bar baz bang))
          (define p q)
          (eq? p q)
             => #t
          (define r (copy-list q))
          (eq? q r)
             => #f
          (equal? q r)
             => #t
          (define bar '(bar))
          (eq? bar (car (copy-list (list bar 'foo))))
          => #t


File: slib.info,  Node: Lists as sets,  Next: Lists as sequences,  Prev: List construction,  Up: Common List Functions

Lists as sets
-------------

  `eq?' is used to test for membership by all the procedures below
which treat lists as sets.

 - Function: adjoin E L
     `adjoin' returns the adjoint of the element E and the list L.
     That is, if E is in L, `adjoin' returns L, otherwise, it returns
     `(cons E L)'.

     Example:
          (adjoin 'baz '(bar baz bang))
             => (bar baz bang)
          (adjoin 'foo '(bar baz bang))
             => (foo bar baz bang)

 - Function: union L1 L2
     `union' returns the combination of L1 and L2.  Duplicates between
     L1 and L2 are culled.  Duplicates within L1 or within L2 may or
     may not be removed.

     Example:
          (union '(1 2 3 4) '(5 6 7 8))
             => (4 3 2 1 5 6 7 8)
          (union '(1 2 3 4) '(3 4 5 6))
             => (2 1 3 4 5 6)

 - Function: intersection L1 L2
     `intersection' returns all elements that are in both L1 and L2.

     Example:
          (intersection '(1 2 3 4) '(3 4 5 6))
             => (3 4)
          (intersection '(1 2 3 4) '(5 6 7 8))
             => ()

 - Function: set-difference L1 L2
     `set-difference' returns the union of all elements that are in L1
     but not in L2.

     Example:
          (set-difference '(1 2 3 4) '(3 4 5 6))
             => (1 2)
          (set-difference '(1 2 3 4) '(1 2 3 4 5 6))
             => ()

 - Function: member-if PRED LST
     `member-if' returns LST if `(PRED ELEMENT)' is `#t' for any
     ELEMENT in LST.  Returns `#f' if PRED does not apply to any
     ELEMENT in LST.

     Example:
          (member-if vector? '(1 2 3 4))
             => #f
          (member-if number? '(1 2 3 4))
             => (1 2 3 4)

 - Function: some PRED LST . MORE-LSTS
     PRED is a boolean function of as many arguments as there are list
     arguments to `some' i.e., LST plus any optional arguments.  PRED
     is applied to successive elements of the list arguments in order.
     `some' returns `#t' as soon as one of these applications returns
     `#t', and is `#f' if none returns `#t'.  All the lists should have
     the same length.

     Example:
          (some odd? '(1 2 3 4))
             => #t
          
          (some odd? '(2 4 6 8))
             => #f
          
          (some > '(2 3) '(1 4))
             => #f

 - Function: every PRED LST . MORE-LSTS
     `every' is analogous to `some' except it returns `#t' if every
     application of PRED is `#t' and `#f' otherwise.

     Example:
          (every even? '(1 2 3 4))
             => #f
          
          (every even? '(2 4 6 8))
             => #t
          
          (every > '(2 3) '(1 4))
             => #f

 - Function: notany PRED . LST
     `notany' is analogous to `some' but returns `#t' if no application
     of PRED returns `#t' or `#f' as soon as any one does.

 - Function: notevery PRED . LST
     `notevery' is analogous to `some' but returns `#t' as soon as an
     application of PRED returns `#f', and `#f' otherwise.

     Example:
          (notevery even? '(1 2 3 4))
             => #t
          
          (notevery even? '(2 4 6 8))
             => #f

 - Function: find-if PRED LST
     `find-if' searches for the first ELEMENT in LST such that `(PRED
     ELEMENT)' returns `#t'.  If it finds any such ELEMENT in LST,
     ELEMENT is returned.  Otherwise, `#f' is returned.

     Example:
          (find-if number? '(foo 1 bar 2))
             => 1
          
          (find-if number? '(foo bar baz bang))
             => #f
          
          (find-if symbol? '(1 2 foo bar))
             => foo

 - Function: remove ELT LST
     `remove' removes all occurrences of ELT from LST using `eqv?' to
     test for equality and returns everything that's left.  N.B.: other
     implementations (Chez, Scheme->C and T, at least) use `equal?' as
     the equality test.

     Example:
          (remove 1 '(1 2 1 3 1 4 1 5))
             => (2 3 4 5)
          
          (remove 'foo '(bar baz bang))
             => (bar baz bang)

 - Function: remove-if PRED LST
     `remove-if' removes all ELEMENTs from LST where `(PRED ELEMENT)'
     is `#t' and returns everything that's left.

     Example:
          (remove-if number? '(1 2 3 4))
             => ()
          
          (remove-if even? '(1 2 3 4 5 6 7 8))
             => (1 3 5 7)

 - Function: remove-if-not PRED LST
     `remove-if-not' removes all ELEMENTs from LST for which `(PRED
     ELEMENT)' is `#f' and returns everything that's left.

     Example:
          (remove-if-not number? '(foo bar baz))
             => ()
          (remove-if-not odd? '(1 2 3 4 5 6 7 8))
             => (1 3 5 7)

 - Function: has-duplicates? LST
     returns `#t' if 2 members of LST are `equal?', `#f' otherwise.
     Example:
          (has-duplicates? '(1 2 3 4))
             => #f
          
          (has-duplicates? '(2 4 3 4))
             => #t


File: slib.info,  Node: Lists as sequences,  Next: Destructive list operations,  Prev: Lists as sets,  Up: Common List Functions

Lists as sequences
------------------

 - Function: position OBJ LST
     `position' returns the 0-based position of OBJ in LST, or `#f' if
     OBJ does not occur in LST.

     Example:
          (position 'foo '(foo bar baz bang))
             => 0
          (position 'baz '(foo bar baz bang))
             => 2
          (position 'oops '(foo bar baz bang))
             => #f

 - Function: reduce P LST
     `reduce' combines all the elements of a sequence using a binary
     operation (the combination is left-associative).  For example,
     using `+', one can add up all the elements.  `reduce' allows you to
     apply a function which accepts only two arguments to more than 2
     objects.  Functional programmers usually refer to this as "foldl".
     `collect:reduce' (*Note Collections::) provides a version of
     `collect' generalized to collections.

     Example:
          (reduce + '(1 2 3 4))
             => 10
          (define (bad-sum . l) (reduce + l))
          (bad-sum 1 2 3 4)
             == (reduce + (1 2 3 4))
             == (+ (+ (+ 1 2) 3) 4)
          => 10
          (bad-sum)
             == (reduce + ())
             => ()
          (reduce string-append '("hello" "cruel" "world"))
             == (string-append (string-append "hello" "cruel") "world")
             => "hellocruelworld"
          (reduce anything '())
             => ()
          (reduce anything '(x))
             => x

     What follows is a rather non-standard implementation of `reverse'
     in terms of `reduce' and a combinator elsewhere called "C".

          ;;; Contributed by Jussi Piitulainen (jpiitula@ling.helsinki.fi)
          
          (define commute
            (lambda (f)
              (lambda (x y)
                (f y x))))
          
          (define reverse
            (lambda (args)
              (reduce-init (commute cons) args)))

 - Function: reduce-init P INIT LST
     `reduce-init' is the same as reduce, except that it implicitly
     inserts INIT at the start of the list.  `reduce-init' is preferred
     if you want to handle the null list, the one-element, and lists
     with two or more elements consistently.  It is common to use the
     operator's idempotent as the initializer.  Functional programmers
     usually call this "foldl".

     Example:
          (define (sum . l) (reduce-init + 0 l))
          (sum 1 2 3 4)
             == (reduce-init + 0 (1 2 3 4))
             == (+ (+ (+ (+ 0 1) 2) 3) 4)
             => 10
          (sum)
             == (reduce-init + 0 '())
             => 0
          
          (reduce-init string-append "@" '("hello" "cruel" "world"))
          ==
          (string-append (string-append (string-append "@" "hello")
                                         "cruel")
                         "world")
          => "@hellocruelworld"

     Given a differentiation of 2 arguments, `diff', the following will
     differentiate by any number of variables.
          (define (diff* exp . vars)
            (reduce-init diff exp vars))

     Example:
          ;;; Real-world example:  Insertion sort using reduce-init.
          
          (define (insert l item)
            (if (null? l)
                (list item)
                (if (< (car l) item)
                    (cons (car l) (insert (cdr l) item))
                    (cons item l))))
          (define (insertion-sort l) (reduce-init insert '() l))
          
          (insertion-sort '(3 1 4 1 5)
             == (reduce-init insert () (3 1 4 1 5))
             == (insert (insert (insert (insert (insert () 3) 1) 4) 1) 5)
             == (insert (insert (insert (insert (3)) 1) 4) 1) 5)
             == (insert (insert (insert (1 3) 4) 1) 5)
             == (insert (insert (1 3 4) 1) 5)
             == (insert (1 1 3 4) 5)
             => (1 1 3 4 5)

 - Function: butlast LST N
     `butlast' returns all but the last N elements of LST.

     Example:
          (butlast '(1 2 3 4) 3)
             => (1)
          (butlast '(1 2 3 4) 4)
             => ()

 - Function: nthcdr N LST
     `nthcdr' takes N `cdr's of LST and returns the result.  Thus
     `(nthcdr 3 LST)' == `(cdddr LST)'

     Example:
          (nthcdr 2 '(1 2 3 4))
             => (3 4)
          (nthcdr 0 '(1 2 3 4))
             => (1 2 3 4)

 - Function: last LST N
     `last' returns the last N elements of LST.  N must be a
     non-negative integer.

     Example:
          (last '(foo bar baz bang) 2)
             => (baz bang)
          (last '(1 2 3) 0)
             => 0


File: slib.info,  Node: Destructive list operations,  Next: Non-List functions,  Prev: Lists as sequences,  Up: Common List Functions

Destructive list operations
---------------------------

  These procedures may mutate the list they operate on, but any such
mutation is undefined.

 - Procedure: nconc ARGS
     `nconc' destructively concatenates its arguments.  (Compare this
     with `append', which copies arguments rather than destroying them.)
     Sometimes called `append!' (*Note Rev2 Procedures::).

     Example:  You want to find the subsets of a set.  Here's the
     obvious way:

          (define (subsets set)
            (if (null? set)
                '(())
                (append (mapcar (lambda (sub) (cons (car set) sub))
                                (subsets (cdr set)))
                        (subsets (cdr set)))))
     But that does way more consing than you need.  Instead, you could
     replace the `append' with `nconc', since you don't have any need
     for all the intermediate results.

     Example:
          (define x '(a b c))
          (define y '(d e f))
          (nconc x y)
             => (a b c d e f)
          x
             => (a b c d e f)

     `nconc' is the same as `append!' in `sc2.scm'.

 - Procedure: nreverse LST
     `nreverse' reverses the order of elements in LST by mutating
     `cdr's of the list.  Sometimes called `reverse!'.

     Example:
          (define foo '(a b c))
          (nreverse foo)
             => (c b a)
          foo
             => (a)

     Some people have been confused about how to use `nreverse',
     thinking that it doesn't return a value.  It needs to be pointed
     out that
          (set! lst (nreverse lst))

     is the proper usage, not
          (nreverse lst)
     The example should suffice to show why this is the case.

 - Procedure: delete ELT LST
 - Procedure: delete-if PRED LST
 - Procedure: delete-if-not PRED LST
     Destructive versions of `remove' `remove-if', and `remove-if-not'.

     Example:
          (define lst '(foo bar baz bang))
          (delete 'foo lst)
             => (bar baz bang)
          lst
             => (foo bar baz bang)
          
          (define lst '(1 2 3 4 5 6 7 8 9))
          (delete-if odd? lst)
             => (2 4 6 8)
          lst
             => (1 2 4 6 8)

     Some people have been confused about how to use `delete',
     `delete-if', and `delete-if', thinking that they dont' return a
     value.  It needs to be pointed out that
          (set! lst (delete el lst))

     is the proper usage, not
          (delete el lst)
     The examples should suffice to show why this is the case.


File: slib.info,  Node: Non-List functions,  Prev: Destructive list operations,  Up: Common List Functions

Non-List functions
------------------

 - Function: and? . ARGS
     `and?' checks to see if all its arguments are true.  If they are,
     `and?' returns `#t', otherwise, `#f'.  (In contrast to `and', this
     is a function, so all arguments are always evaluated and in an
     unspecified order.)

     Example:
          (and? 1 2 3)
             => #t
          (and #f 1 2)
             => #f

 - Function: or? . ARGS
     `or?' checks to see if any of its arguments are true.  If any is
     true, `or?' returns `#t', and `#f' otherwise.  (To `or' as `and?'
     is to `and'.)

     Example:
          (or? 1 2 #f)
             => #t
          (or? #f #f #f)
             => #f

 - Function: atom? OBJECT
     Returns `#t' if OBJECT is not a pair and `#f' if it is pair.
     (Called `atom' in Common LISP.)
          (atom? 1)
             => #t
          (atom? '(1 2))
             => #f
          (atom? #(1 2))   ; dubious!
             => #t

 - Function: type-of OBJECT
     Returns a symbol name for the type of OBJECT.

 - Function: coerce OBJECT RESULT-TYPE
     Converts and returns OBJECT of type `char', `number', `string',
     `symbol', `list', or `vector' to RESULT-TYPE (which must be one of
     these symbols).


File: slib.info,  Node: Format,  Next: Generic-Write,  Prev: Common List Functions,  Up: Procedures

Format
======

  `(require 'format)'

* Menu:

* Format Interface::
* Format Specification::


File: slib.info,  Node: Format Interface,  Next: Format Specification,  Prev: Format,  Up: Format

Format Interface
----------------

 - Function: format DESTINATION FORMAT-STRING . ARGUMENTS
     An almost complete implementation of Common LISP format description
     according to the CL reference book `Common LISP' from Guy L.
     Steele, Digital Press.  Backward compatible to most of the
     available Scheme format implementations.

     Returns `#t', `#f' or a string; has side effect of printing
     according to FORMAT-STRING.  If DESTINATION is `#t', the output is
     to the current output port and `#t' is returned.  If DESTINATION
     is `#f', a formatted string is returned as the result of the call.
     NEW: If DESTINATION is a string, DESTINATION is regarded as the
     format string; FORMAT-STRING is then the first argument and the
     output is returned as a string. If DESTINATION is a number, the
     output is to the current error port if available by the
     implementation. Otherwise DESTINATION must be an output port and
     `#t' is returned.

     FORMAT-STRING must be a string.  In case of a formatting error
     format returns `#f' and prints a message on the current output or
     error port.  Characters are output as if the string were output by
     the `display' function with the exception of those prefixed by a
     tilde (~).  For a detailed description of the FORMAT-STRING syntax
     please consult a Common LISP format reference manual.  For a test
     suite to verify this format implementation load `formatst.scm'.
     Please send bug reports to `lutzeb@cs.tu-berlin.de'.

     Note: `format' is not reentrant, i.e. only one `format'-call may
     be executed at a time.



File: slib.info,  Node: Format Specification,  Prev: Format Interface,  Up: Format

Format Specification (Format version 3.0)
-----------------------------------------

  Please consult a Common LISP format reference manual for a detailed
description of the format string syntax.  For a demonstration of the
implemented directives see `formatst.scm'.

  This implementation supports directive parameters and modifiers (`:'
and `@' characters). Multiple parameters must be separated by a comma
(`,').  Parameters can be numerical parameters (positive or negative),
character parameters (prefixed by a quote character (`''), variable
parameters (`v'), number of rest arguments parameter (`#'), empty and
default parameters.  Directive characters are case independent. The
general form of a directive is:

DIRECTIVE ::= ~{DIRECTIVE-PARAMETER,}[:][@]DIRECTIVE-CHARACTER

DIRECTIVE-PARAMETER ::= [ [-|+]{0-9}+ | 'CHARACTER | v | # ]

Implemented CL Format Control Directives
........................................

  Documentation syntax: Uppercase characters represent the corresponding
control directive characters. Lowercase characters represent control
directive parameter descriptions.

`~A'
     Any (print as `display' does).
    `~@A'
          left pad.

    `~MINCOL,COLINC,MINPAD,PADCHARA'
          full padding.

`~S'
     S-expression (print as `write' does).
    `~@S'
          left pad.

    `~MINCOL,COLINC,MINPAD,PADCHARS'
          full padding.

`~D'
     Decimal.
    `~@D'
          print number sign always.

    `~:D'
          print comma separated.

    `~MINCOL,PADCHAR,COMMACHARD'
          padding.

`~X'
     Hexadecimal.
    `~@X'
          print number sign always.

    `~:X'
          print comma separated.

    `~MINCOL,PADCHAR,COMMACHARX'
          padding.

`~O'
     Octal.
    `~@O'
          print number sign always.

    `~:O'
          print comma separated.

    `~MINCOL,PADCHAR,COMMACHARO'
          padding.

`~B'
     Binary.
    `~@B'
          print number sign always.

    `~:B'
          print comma separated.

    `~MINCOL,PADCHAR,COMMACHARB'
          padding.

`~NR'
     Radix N.
    `~N,MINCOL,PADCHAR,COMMACHARR'
          padding.

`~@R'
     print a number as a Roman numeral.

`~:R'
     print a number as an ordinal English number.

`~:@R'
     print a number as a cardinal English number.

`~P'
     Plural.
    `~@P'
          prints `y' and `ies'.

    `~:P'
          as `~P but jumps 1 argument backward.'

    `~:@P'
          as `~@P but jumps 1 argument backward.'

`~C'
     Character.
    `~@C'
          prints a character as the reader can understand it (i.e. `#\'
          prefixing).

    `~:C'
          prints a character as emacs does (eg. `^C' for ASCII 03).

`~F'
     Fixed-format floating-point (prints a flonum like MMM.NNN).
    `~WIDTH,DIGITS,SCALE,OVERFLOWCHAR,PADCHARF'
    `~@F'
          If the number is positive a plus sign is printed.

`~E'
     Exponential floating-point (prints a flonum like MMM.NNN`E'EE).
    `~WIDTH,DIGITS,EXPONENTDIGITS,SCALE,OVERFLOWCHAR,PADCHAR,EXPONENTCHARE'
    `~@E'
          If the number is positive a plus sign is printed.

`~G'
     General floating-point (prints a flonum either fixed or
     exponential).
    `~WIDTH,DIGITS,EXPONENTDIGITS,SCALE,OVERFLOWCHAR,PADCHAR,EXPONENTCHARG'
    `~@G'
          If the number is positive a plus sign is printed.

`~$'
     Dollars floating-point (prints a flonum in fixed with signs
     separated).
    `~DIGITS,SCALE,WIDTH,PADCHAR$'
    `~@$'
          If the number is positive a plus sign is printed.

    `~:@$'
          A sign is always printed and appears before the padding.

    `~:$'
          The sign appears before the padding.

`~%'
     Newline.
    `~N%'
          print N newlines.

`~&'
     print newline if not at the beginning of the output line.
    `~N&'
          prints `~&' and then N-1 newlines.

`~|'
     Page Separator.
    `~N|'
          print N page separators.

`~~'
     Tilde.
    `~N~'
          print N tildes.

`~'<newline>
     Continuation Line.
    `~:'<newline>
          newline is ignored, white space left.

    `~@'<newline>
          newline is left, white space ignored.

`~T'
     Tabulation.
    `~@T'
          relative tabulation.

    `~COLNUM,COLINCT'
          full tabulation.

`~?'
     Indirection (expects indirect arguments as a list).
    `~@?'
          extracts indirect arguments from format arguments.

`~(STR~)'
     Case conversion (converts by `string-downcase').
    `~:(STR~)'
          converts by `string-capitalize'.

    `~@(STR~)'
          converts by `string-capitalize-first'.

    `~:@(STR~)'
          converts by `string-upcase'.

`~*'
     Argument Jumping (jumps 1 argument forward).
    `~N*'
          jumps N arguments forward.

    `~:*'
          jumps 1 argument backward.

    `~N:*'
          jumps N arguments backward.

    `~@*'
          jumps to the 0th argument.

    `~N@*'
          jumps to the Nth argument (beginning from 0)

`~[STR0~;STR1~;...~;STRN~]'
     Conditional Expression (numerical clause conditional).
    `~N['
          take argument from N.

    `~@['
          true test conditional.

    `~:['
          if-else-then conditional.

    `~;'
          clause separator.

    `~:;'
          default clause follows.

`~{STR~}'
     Iteration (args come from the next argument (a list)).
    `~N{'
          at most N iterations.

    `~:{'
          args from next arg (a list of lists).

    `~@{'
          args from the rest of arguments.

    `~:@{'
          args from the rest args (lists).

`~^'
     Up and out.
    `~N^'
          aborts if N = 0

    `~N,M^'
          aborts if N = M

    `~N,M,K^'
          aborts if N <= M <= K

Not Implemented CL Format Control Directives
............................................

`~:A'
     print `#f' as an empty list (see below).

`~:S'
     print `#f' as an empty list (see below).

`~<~>'
     Justification.

`~:^'
     (sorry I don't understand its semantics completely)

Extended, Replaced and Additional Control Directives
....................................................

`~MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHD'
`~MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHX'
`~MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHO'
`~MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHB'
`~N,MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHR'
     COMMAWIDTH is the number of characters between two comma
     characters.

`~I'
     print a R4RS complex number as `~F~@Fi' with passed parameters for
     `~F'.

`~Y'
     Pretty print formatting of an argument for scheme code lists.

`~K'
     Same as `~?.'

`~!'
     Flushes the output if format DESTINATION is a port.

`~_'
     Print a `#\space' character
    `~N_'
          print N `#\space' characters.

`~/'
     Print a `#\tab' character
    `~N/'
          print N `#\tab' characters.

`~NC'
     Takes N as an integer representation for a character. No arguments
     are consumed. N is converted to a character by `integer->char'.  N
     must be a positive decimal number.

`~:S'
     Print out readproof.  Prints out internal objects represented as
     `#<...>' as strings `"#<...>"' so that the format output can always
     be processed by `read'.

`~:A'
     Print out readproof.  Prints out internal objects represented as
     `#<...>' as strings `"#<...>"' so that the format output can always
     be processed by `read'.

`~Q'
     Prints information and a copyright notice on the format
     implementation.
    `~:Q'
          prints format version.

`~F, ~E, ~G, ~$'
     may also print number strings, i.e. passing a number as a string
     and format it accordingly.

Configuration Variables
.......................

  Format has some configuration variables at the beginning of
`format.scm' to suit the systems and users needs. There should be no
modification necessary for the configuration that comes with SLIB.  If
modification is desired the variable should be set after the format
code is loaded. Format detects automatically if the running scheme
system implements floating point numbers and complex numbers.

FORMAT:SYMBOL-CASE-CONV
     Symbols are converted by `symbol->string' so the case type of the
     printed symbols is implementation dependent.
     `format:symbol-case-conv' is a one arg closure which is either
     `#f' (no conversion), `string-upcase', `string-downcase' or
     `string-capitalize'. (default `#f')

FORMAT:IOBJ-CASE-CONV
     As FORMAT:SYMBOL-CASE-CONV but applies for the representation of
     implementation internal objects. (default `#f')

FORMAT:EXPCH
     The character prefixing the exponent value in `~E' printing.
     (default `#\E')

Compatibility With Other Format Implementations
...............................................

SLIB format 2.x:
     See `format.doc'.

SLIB format 1.4:
     Downward compatible except for padding support and `~A', `~S',
     `~P', `~X' uppercase printing.  SLIB format 1.4 uses C-style
     `printf' padding support which is completely replaced by the CL
     `format' padding style.

MIT C-Scheme 7.1:
     Downward compatible except for `~', which is not documented
     (ignores all characters inside the format string up to a newline
     character).  (7.1 implements `~a', `~s', ~NEWLINE, `~~', `~%',
     numerical and variable parameters and `:/@' modifiers in the CL
     sense).

Elk 1.5/2.0:
     Downward compatible except for `~A' and `~S' which print in
     uppercase.  (Elk implements `~a', `~s', `~~', and `~%' (no
     directive parameters or modifiers)).

Scheme->C 01nov91:
     Downward compatible except for an optional destination parameter:
     S2C accepts a format call without a destination which returns a
     formatted string. This is equivalent to a #f destination in S2C.
     (S2C implements `~a', `~s', `~c', `~%', and `~~' (no directive
     parameters or modifiers)).

  This implementation of format is solely useful in the SLIB context
because it requires other components provided by SLIB.


File: slib.info,  Node: Generic-Write,  Next: Line I/O,  Prev: Format,  Up: Procedures

Generic-Write
=============

  `(require 'generic-write)'

  `generic-write' is a procedure that transforms a Scheme data value
(or Scheme program expression) into its textual representation and
prints it.  The interface to the procedure is sufficiently general to
easily implement other useful formatting procedures such as pretty
printing, output to a string and truncated output.

 - Procedure: generic-write OBJ DISPLAY? WIDTH OUTPUT
    OBJ
          Scheme data value to transform.

    DISPLAY?
          Boolean, controls whether characters and strings are quoted.

    WIDTH
          Extended boolean, selects format:
         #f
               single line format

         integer > 0
               pretty-print (value = max nb of chars per line)

    OUTPUT
          Procedure of 1 argument of string type, called repeatedly with
          successive substrings of the textual representation.  This
          procedure can return `#f' to stop the transformation.

     The value returned by `generic-write' is undefined.

     Examples:
          (write obj) == (generic-write obj #f #f DISPLAY-STRING)
          (display obj) == (generic-write obj #t #f DISPLAY-STRING)

     where
          DISPLAY-STRING ==
          (lambda (s) (for-each write-char (string->list s)) #t)


File: slib.info,  Node: Line I/O,  Next: Multi-Processing,  Prev: Generic-Write,  Up: Procedures

Line I/O
========

  `(require 'line-i/o)'

 - Function: read-line
 - Function: read-line PORT
     Returns a string of the characters up to, but not including a
     newline or end of file, updating PORT to point to the character
     following the newline.  If no characters are available, an end of
     file object is returned.  PORT may be omitted, in which case it
     defaults to the value returned by `current-input-port'.

 - Function: read-line! STRING
 - Function: read-line! STRING PORT
     Fills STRING with characters up to, but not including a newline or
     end of file, updating the port to point to the last character read
     or following the newline if it was read.  If no characters are
     available, an end of file object is returned.  If a newline or end
     of file was found, the number of characters read is returned.
     Otherwise, `#f' is returned.  PORT may be omitted, in which case
     it defaults to the value returned by `current-input-port'.

 - Function: write-line STRING
 - Function: write-line STRING PORT
     Writes STRING followed by a newline to the given port and returns
     an unspecified value.  Port may be omited, in which case it
     defaults to the value returned by `current-input-port'.


File: slib.info,  Node: Multi-Processing,  Next: Object-To-String,  Prev: Line I/O,  Up: Procedures

Multi-Processing
================

  `(require 'process)'

 - Procedure: add-process! PROC
     Adds proc, which must be a procedure (or continuation) capable of
     accepting accepting one argument, to the `process:queue'.  The
     value returned is unspecified.  The argument to PROC should be
     ignored.  If PROC returns, the process is killed.

 - Procedure: process:schedule!
     Saves the current process on `process:queue' and runs the next
     process from `process:queue'.  The value returned is unspecified.

 - Procedure: kill-process!
     Kills the current process and runs the next process from
     `process:queue'.  If there are no more processes on
     `process:queue', `(slib:exit)' is called (*Note System::).


File: slib.info,  Node: Object-To-String,  Next: Pretty-Print,  Prev: Multi-Processing,  Up: Procedures

Object-To-String
================

  `(require 'object->string)'

 - Function: object->string OBJ
     Returns the textual representation of OBJ as a string.


File: slib.info,  Node: Pretty-Print,  Next: Sorting,  Prev: Object-To-String,  Up: Procedures

Pretty-Print
============

  `(require 'pretty-print)'

 - Procedure: pretty-print OBJ
 - Procedure: pretty-print OBJ PORT
     `pretty-print's OBJ on PORT.  If PORT is not specified,
     `current-output-port' is used.

     Example:
          (pretty-print '((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15)
                          (16 17 18 19 20) (21 22 23 24 25)))
             -| ((1 2 3 4 5)
             -|  (6 7 8 9 10)
             -|  (11 12 13 14 15)
             -|  (16 17 18 19 20)
             -|  (21 22 23 24 25))

  `(require 'pprint-file)'

 - Procedure: pprint-file INFILE
 - Procedure: pprint-file INFILE OUTFILE
     Pretty-prints all the code in INFILE.  If OUTFILE is specified,
     the output goes to OUTFILE, otherwise it goes to
     `(current-output-port)'.

 - Function: pprint-filter-file INFILE PROC OUTFILE
 - Function: pprint-filter-file INFILE PROC
     INFILE is a port or a string naming an existing file.  Scheme
     source code expressions and definitions are read from the port (or
     file) and PROC is applied to them sequentially.

     OUTFILE is a port or a string.  If no OUTFILE is specified then
     `current-output-port' is assumed.  These expanded expressions are
     then `pretty-print'ed to this port.

     Whitepsace and comments (introduced by `;') which are not part of
     scheme expressions are reproduced in the output.  This procedure
     does not affect the values returned by `current-input-port' and
     `current-output-port'.

  `pprint-filter-file' can be used to pre-compile macro-expansion and
thus can reduce loading time.  The following will write into
`exp-code.scm' the result of expanding all defmacros in `code.scm'.
     (require 'pprint-file)
     (require 'defmacroexpand)
     (defmacro:load "my-macros.scm")
     (pprint-filter-file "code.scm" defmacro:expand* "exp-code.scm")