aboutsummaryrefslogtreecommitdiffstats
path: root/randinex.scm
blob: 717b30645caeb5d29f3d606f5e540516854df262 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
;;;"randinex.scm" Pseudo-Random inexact real numbers for scheme.
;;; Copyright (C) 1991, 1993, 1999 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1.  Any copy made of this software must include this copyright notice
;in full.
;
;2.  I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3.  In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.

;This file is loaded by random.scm if inexact numbers are supported by
;the implementation.

;;; Sphere and normal functions corrections from: Harald Hanche-Olsen

(require 'random)
(require 'inexact)

;;@code{(require 'random-inexact)}
;;@ftindex random-inexact

;;; Generate an inexact real between 0 and 1.
(define random:uniform1		    ; how many chunks fill an inexact?
  (do ((random:chunks/float 0 (+ 1 random:chunks/float))
       (smidgen 1.0 (/ smidgen 256.0)))
      ((or (= 1 (+ 1 smidgen)) (= 4 random:chunks/float))
       (lambda (state)
	 (do ((cnt random:chunks/float (+ -1 cnt))
	      (uni (/ (random:chunk state) 256.0)
		   (/ (+ uni (random:chunk state)) 256.0)))
	     ((= 1 cnt) uni))))))

;;@args
;;@args state
;;Returns an uniformly distributed inexact real random number in the
;;range between 0 and 1.
(define (random:uniform . args)
  (random:uniform1 (if (null? args) *random-state* (car args))))


;;@args
;;@args state
;;Returns an inexact real in an exponential distribution with mean 1.  For
;;an exponential distribution with mean @var{u} use
;;@w{@code{(* @var{u} (random:exp))}}.
(define (random:exp . args)
  (- (log (random:uniform1 (if (null? args) *random-state* (car args))))))


;;@args
;;@args state
;;Returns an inexact real in a normal distribution with mean 0 and
;;standard deviation 1.  For a normal distribution with mean @var{m} and
;;standard deviation @var{d} use
;;@w{@code{(+ @var{m} (* @var{d} (random:normal)))}}.
(define (random:normal . args)
  (let ((vect (make-vector 1)))
    (apply random:normal-vector! vect args)
    (vector-ref vect 0)))


;;; If x and y are independent standard normal variables, then with
;;; x=r*cos(t), y=r*sin(t), we find that t is uniformly distributed
;;; over [0,2*pi] and the cumulative distribution of r is
;;; 1-exp(-r^2/2).  This latter means that u=exp(-r^2/2) is uniformly
;;; distributed on [0,1], so r=sqrt(-2 log u) can be used to generate r.

;;@args vect
;;@args vect state
;;Fills @1 with inexact real random numbers which are independent
;;and standard normally distributed (i.e., with mean 0 and variance 1).
(define random:normal-vector!
  (let ((*2pi (* 8 (atan 1))))
    (lambda (vect . args)
      (let ((state (if (null? args) *random-state* (car args)))
	    (sum2 0))
	(let ((do! (lambda (k x)
		     (vector-set! vect k x)
		     (set! sum2 (+ sum2 (* x x))))))
	  (do ((n (- (vector-length vect) 1) (- n 2)))
	      ((negative? n) sum2)
	    (let ((t (* *2pi (random:uniform1 state)))
		  (r (sqrt (* -2 (log (random:uniform1 state))))))
	      (do! n (* r (cos t)))
	      (if (positive? n) (do! (- n 1) (* r (sin t)))))))))))


;;; For the uniform distibution on the hollow sphere, pick a normal
;;; family and scale.

;;@args vect
;;@args vect state
;;Fills @1 with inexact real random numbers the sum of whose
;;squares is equal to 1.0.  Thinking of @1 as coordinates in space
;;of dimension n = @code{(vector-length @1)}, the coordinates are
;;uniformly distributed over the surface of the unit n-shere.
(define (random:hollow-sphere! vect . args)
  (let ((ms (sqrt (apply random:normal-vector! vect args))))
    (do ((n (- (vector-length vect) 1) (- n 1)))
	((negative? n))
      (vector-set! vect n (/ (vector-ref vect n) ms)))))


;;; For the uniform distribution on the solid sphere, note that in
;;; this distribution the length r of the vector has cumulative
;;; distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
;;; generated as r=u^(1/n).

;;@args vect
;;@args vect state
;;Fills @1 with inexact real random numbers the sum of whose
;;squares is less than 1.0.  Thinking of @1 as coordinates in
;;space of dimension @var{n} = @code{(vector-length @1)}, the
;;coordinates are uniformly distributed within the unit @var{n}-shere.
;;The sum of the squares of the numbers is returned.
(define (random:solid-sphere! vect . args)
  (apply random:hollow-sphere! vect args)
  (let ((r (expt (random:uniform1 (if (null? args) *random-state* (car args)))
		 (/ (vector-length vect)))))
    (do ((n (- (vector-length vect) 1) (- n 1)))
	((negative? n) r)
      (vector-set! vect n (* r (vector-ref vect n))))))